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Agenda

« Some background: What are current sources of electricity and how are energy and
power related?

« Where does Earth’s heat come and how does heat move?

« What is geothermal energy and how does depth and temperature impact use of
geothermal energy?

» What criteria are needed to make a geothermal fluids viable for development?

« What are some key attributes and challenges of geothermal energy?

 Where are most developed geothermal systems found?

« What makes the Great Basin of the western U.S. so prospective for geothermal energy?

« What are some exciting new technologies for expanding geothermal energy, including
recovery of critical minerals?
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Sources of U.S. electricity generation, 2022

Total = 4.24 trillion kilowatthours

Some Background on

hydro 6.3% "
solat 3.4% renewables 21.5%

Current and Recent o (13.5% in 2014)

Past Sources of nudiear 18.2%
o« o . (20% in 2014)
Electricity Generation -

4

petroleum 0.9%

coal 19.5%

* In CA, geothermal electricity ~60% § (RILEA Tt ), ~66% in
accounted for about 6% of state’s fossir f:;:: | 2014
electrical production (CEC report, in 2022 ] including
2020) including oil natural gas 39.8% oil

* In Nevada, geothermal accounted for (25% in 2014)
~10% of state’s electrical generation L r eia

(Highest per capita usage of . .
Data source: U.S. Energy Information Administration, Eiectric Power Monthly, February 2023, preliminary data
geothermal energy in the U' S. !) Note: Includes generation from power plants with at least 1,000 kilowatts of electric generation capacity (utility-scale)

Hydro is conventional hydroelectric. Petroleum includes petroleum liquids, petroleum coke, other gases, hydroelectric
pumped storage, and other sources

3 Boden 2023



GEOTHERMAL RISING CONFERENCE

GRC? OCTOBER 1-4, 2023 + RENO, NV

Measuring Energy and Power

« Basic unit of Energy is Joule; basic unit of Power is Watt

- 1 Watt of Power = 1 Joule per second (P = E/t)
* One kiloWatt (1 kW) = 1000 Joules/second; one MegaWatt (1 MW) = one million joules/s
« MW is typically used in rating delivery of energy output of power plants or rate of energy

___output for geothermal wells

« One MW of power serves about 850 homes

* Energy = Power x time - kiloWatt x time (in power industry unit of time is
hour)-> kWh on your power bill

« Energy generated from power plants measured in MegaWatt-hour (MWh) or GigaWatt-
hour (GWh) - Palo Verde nuclear plant in Arizona (4.0 GW of power x 24 hrs/day = 98
GWh of energy per day)

« Serves 70% of AZ energy needs and no GHG emissions!

4 Boden 2023
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<& Top 10
s T Geothermal
2,356 Countries 20227

1 GW
GOy e Installed Capacity in MWe
Club 1 935 Philippines pJOrluzlc;ry e

New Zealand

w Turkiye

944 Mexico

944 Kenyo lceland 754

Italy [ Japan 621
Other 1,097

Boden 2023

Total 16,127 MW

*For Power Production
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- Earth is a giant heat engine-> ability to do work Earth’s Interior
+ What might be examples of this work? Contains Heat

» Erupting Volcanoes F’“ | "

« Earthquakes

« 2011 9.0 M Tohoku EQ heaved ~1500 km of ocean floor 50 m F
(released enough energy in a few seconds to power Los Angeles

for an entire year or could satisfy the energy consumption of the
U. S. for about 2 months))

« Continually moving great chunks of Earth’s crust and upper
mantle over great distances for a long time (heat energy that q
drives plate tectonics) —_—

Ras B RN

Free flowing well at Beowawe, NV

Thermal energy is vast!

« Tapping <1/1000t of one percent of thermal energy of upper crust
would equal the US energy consumption in a given year

Boden 2023
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Where Does the Earth’s Heat Come From?

S—.

1. Residual heat left over from Earth’s TempEiSas = Sl
formation 4.6 Ga 6,000°C 150,000,000 km
) ) from Earth’s surface

« Earth grew from accretion of debris, to the sun
where kinetic energy was converted to
thermalenergy S DS I—

« Earth’s core is about the same oo e g;fnogﬁﬂ?s e
temperature as the surface of the Sun e to the Earth’s core
(~6000°C) |

2. Radioactive decay of U, Th, and K Source:
. https://www.energy.gov/sites/default/files/2019/
¢ EaCh Component ContrlbUteS abOUt 06/f63/GeoVision-full-report-opt.pdf

50% of Earth’s heat output

7 Boden 2023
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How is heat transferred in the Earth?

1. Conduction—transfer of heat by contact
» Transfer of heat through solid rock
« Slow as rocks are poor conductors (good insulators) conduction
« Temperature increases with depth (geothermal gradient) Convection

» Average upper crustal geothermal gradient is about
25°C/km; need higher gradient to be favorable for

conventional geothermal development V\‘LL\/\' \)CJ / {’:‘:frrICdiaﬁon
2. Convection—transfer of heat by motion S il
* More efficient, faster heat transfer than conduction = - ;;)
« Critical for developing geothermal systems for power '
« WIll T change much with depth?

* No due to convective mixing

* Requires good permeability and water in order to
transport or convect heat

8 Boden 2023
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Geothermal Temperature Gradients
0 1Bsmperature (°C) 200 300

Profiles of Drill Temperature, = -
with Depth BN it
* Profiles of temperature o / o
with depth distinguish ~ — et Conductive N

| ——Mammoth3 T prof”e

conductive from the

g
convective zones of heat 5
transfer.
* Convective zones identify |
geothermal reservoirs SR
1500 - Suemnicht, EGS

 Note isothermal profile
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Source: Geothermal Education

What is Geothermal Energy and / O & -

How is It Used? W5 BN Geothermal
: : . S Energy Uses

 Harnessing Earth’s heat for benefit of society e N

Uses of geothermal energy at

« What are some uses? - Bl Usesof gt n
» Produce electrical power (T >~100°C) @

 Direct use of geothermal fluid (T >~40°C)
» More energy efficient than power production
» Heat (cool) buildings and homes
» Aquaculture (fish hatcheries)
» Greenhouses and fruit/vegetable drying
« Geothermal Heat Pumps (T 10°-15°C)
« Can be used anywhere
* Use Earth as a thermal bank

* Reduce energy costs by as much 40%. Why?
* More efficient to move energy than produce energy

« Largest application of direct use (71%) . ~werp— e e I

Ethanol
Biofuels

water Temperature

inary
Geothermal
Power Plants*
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Uses of Geothermal Energy with Depth and

300 350

Figure modified after Moore

Temperature ) Temperature (C)
DIRECT
Heat Pumps BINARY
£

and Simmons, 2013
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Geothermal Heat Pumps (heating and coollng home scale)

e Also called ground source heat pumps (GSHPs)

* More efficient to transfer energy than to produce energy

* For every unit of electricity used, system gleans or dissipates
3-4 units of heat

* About 40% more efficient than air-source heat pumps

* For about every 400 homes on GSHPs, a MW of
electricity is removed from the grid (Z. Magavi, Heet co-
director, GR conference, 2023)

NV has about 1.25M housing units with a state power
consumption of 4.2 GW

* If all housing units converted to GSHPs, state power
consumption could be reduced by about 75%!

 Downside: More expensive upfront costs (ROl about 3-6 years
for new construction and varies depending on climate)
* Upside: 30% tax credit to defer costs (Inflation Reduction Act)
12 Boden 2023

Figure
Source:
Duffield and
Sass, 2003
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Geothermal Heat Pumps (heating and cooling—district scale)

e Converting commercial buildings
5 to district scale GSHPs, would

B LARGE OFFICE 3 H

SEE EUILDING further significantly reduce

: demand on power grid already

afforded by converting residential

HOSPITAL

COLD STORAGE

e { homes.
oy  Bottom line: GSHPs could make a

R | huge impact on reducing power
| // , / g(‘;';f g‘(‘; — and energy usage (energy we save
Winter \ is energy we don’t need to
Treated APARTMENT
Effluent BUILDING produce).

’ CEN:TRAL PLANT
L)St'l([\ W|nter

Heat Exchanger o
N - / b /
Sewer Waste
eat Exchanger

. Graphic modified from NREL:
https://www.nrel.gov/news/features/2023/full
-steam-ahead-unearthing-the-power-of-

WASTEWATER S geothermal.html

TREATMENT PLANT
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Uses of Geothermal Energy with Depth and

Temperature (°C)
200 250 300 350

Temperature

—

DIRECT

Direct Fluid Use

[ %]

Depth (km)

Modified after Moore
and Simmons, 2013
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Peppermill Geothermal
Direct Use

* Major conversion to direct use in 2007-2009

* Drilled two new wells, one for production
and one for injection

» Production well ~4400 ft deep produces ~1500
gpm at a T of 170°-174°F (77°-79°C)

* Injection well ~3900 ft deep accepts 2000 gpm
(pump assisted) located

» Heats entire campus

« Reduced NG consumption by ~85% saving
~$2.25M/yr in 2010

« ROI ~3.5 years!

13 Boden, 2022

= Reimigetion’y | =TI Production

18000 LSk

+——— ~1500ft ————>ll Production
ol Well e

. GeotherriolHeating §

;'In'j'éclti‘on D TR
CoWell ik

4 4 vimem s B i " ST

Modified after image courtesy of Peppermill
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Direct Use of Geothermal Fluids

» Boise, ID district geothermal heating system
» Largestin U. S.
« Began in 1890 (not a typo!)
« System now heats about 7.5M ft2 in about 100
buildings
* Fluid T: 72-75°C

 Paris, France district geothermal system
» Established in 1969

Direct Use

» Exploits the Dogger aquifer at 1.5—-2 km depth 5 ) 'D'
with geothermal fluids at 60°C o el iy ERE ENET 4

- Serves 2M people in about 250,000 homes using e .
50 heating networks, each consisting of a doublet Well Figure source:

production / injection well system Beckers et al., 2021

16 Boden 2023
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Direct Use of Geothermal Fluids

» Mineral ore processing for heap leach Au mines

« Rate of leaching of Au increases 5-17% per degree Celsius of leaching
solution (Pasta et al., 2015)

» Heap leaching stops when solution is <~4°C

* Round Mountain Au-Ag mine, NV

* Produced about 250,000 ounces (~7000 kg) of Au in 2021
« Geothermal fluids (~80°C) pass through heat exchanger at 70l/s to heat Au-leaching
solution
« Geothermal fluids allow year-round leaching without having to heat leaching solution by
burning fossil fuels
* Florida Canyon Au-Ag mine, NV
« Recovered 905 kg of Au (2015) from geothermally heated leaching solution

17 Boden 2023
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What is Needed to Make Geothermal Fluids Viable
for Development? Geothermal Reservoir

Injection Wells

* Five main criteria to make a
hydrothermal resource
economically viable:

1. Large heat source

2. A permeable reservoir

3. A supply of water

4. Aimpermeable cap rock

5. A steady recharge mechanism

Image courtesy of
M. Coolbaugh as
modified from GEO

18 Boden 2023
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Uses of Geothermal Energy with Depth and

Temperature

Electricity
PrOducing

19

Depth (km)

0

50

R
HEAT

USE

350

BINARY

Modified after Moore
and Simmons, 2013
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Types of Geothermal Systems and Related
Power Plants
» Vapor (steam)-dominated fﬂ

. Generator
» Provide greatest amount of power per mass -

i - Turbine =
of fluid f o
» Because reservoir is already steam, all fluid

mass goes to turbine

Condenser [T—=

Wellhead Ground surface Wellhead

* |n order for fluid to occur as steam, reservoir I S o e e e
is underpressured compared to surrounding f
EXPLANATION

rock—geologically rare conditions [ water
:l Steam

Subsurface injection

« World class examples are The Geysers, CA
and Larderello, Italy (the first commercially =
produced geothermal reservoir for power '
generation in 1913). After Dujfield

and Sass, 2003

v

— «
w,
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Types of Geothermal Systems and Related
Power Plants
* High-temperature, liquid-dominated rfgﬁ-’" a4
« T=~180°C —
Original mainstay of the industry (flash)

Fluid exists as a liquid in reservoir

Fluid starts to boil as pressure falls when fluid rises RS A
up well (mixture of steam and liquid—2 phase fluid) AT

From wellhead, 2-phase fluid goes to separator —
where steam rises to top and liquid goes to bottom

Only steam goes to turbine, and brine is re-injected -?, “% *

Energy is partitioned between steam and brine Ao il
unlike vapor-dominated reservoirs and Sass, 2003

h | L
Turbine ==

Conderser

ead Ground surface Wellhead
N §N 8 8 8V 8 ©V 18N

°
Subsurface injection

\
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St ipes t : .
oo plant. . - S | After shut-in and

- servicing, fluid in well is
allowed to flow to muffler
until T is high enough to

bring steam to power
plant.

22
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Types of Geothermal Systems and Related

Power Plants

* Moderate-temperature, liquid-dominated = RE 1l
S Generator
« T>~100-180°C ’_[_FE snerate
. . . . | === Turbin
 Provide an increasing proportion of power. Why? oot s e
xchanger
« Lower T systems are more common than high T :
systems
i — \\Nell\hea\d \Sru\und\suri:\ace\w\ellh\ead "
« Binary systems | AR
» Two fluids—the geothermal fluid provides the heat, E ;L::”'O" ‘gi
and a working fluid that serves the turbo-generator [ ]isobutane vapor 2
Isobutane hiquid 5
« Geothermal fluid passes through heat exchanger to — E
flash working fluid having a low boiling point to Y e P
generate more steam pressure than water of Dol
 Both geothermal and working fluids form closed Aft:rDUff;eld3
loops therefore no emissions of GHGs and Sass, 200

23 Boden 2023
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Types of Geothermal Systems and Related Power

Plants—-Synergistic Configurations

* Integrated Flash-Binary
« Brine goes to a bottoming binary plant to produce power prior to reinjecting

« Hybrid Binary Geothermal and Solar Facilities

« Stillwater Triple Hybrid Facility
« 33 MW capacity geothermal
« 53 MW solar PV (boosts power output during summer)
« 2 MW solar thermal (adds enthalpy to produced geothermal fluids)
« Tungsten Mountain
« 62 MW installed capacity binary geothermal facility
« 7 MW solar PV array to offset power used in plant operation to increase net output

 Hybrid geothermal and hydropower

7 After DiMarzio et al., 2015

I | T T T T T T
0 3 6 9 12 15 18 21 24
Day Hours

—&®— Geo [MW] —l— Solar [MW]

Combined [MW]

« Enel’s Cove Fort, UT — 25 MW installed geothermal power capacity and 0.6 MW hydropower

« Submersible downhole generator placed in injection well

» Back pressure of turbine prevents 2-phase flow and vibration that could otherwise damage equipment

24 Boden 2023
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Installed U. S. Geothermal Power Capacity (Resource
Type/Technology)

25

4,000

3,500

3,000

N
wn
o
o

2,000

1,500

Installed Capacity (MW)

1,000

500

I

Liquid Dominated

Vapor Dominated

1970

|

T

\ Dry Steam

Double Flash

1980

1990

Boden 2023

Note increasing proportion of binary power
plants beginning about 2008 whose power
capacity now exceeds that of flash plants

2000

Binary \

NREL report, 2021

(https://www.nrel.gov/docs
/fy210sti/78291.pdf)

2010 2020

grc2023.mygeoenergynow.org | geothermal.org
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Comparative Production Rates

Water well — 5to 50 gpm  ($40-$400/day)

Oil well — 20 gpm

650 barrels/day
(~$58,000/day at
S90/barrel as of
09/20/23)

Geothermal well ,
Li recovery from Salton

A
= W 2000 gpm o, geothermal brine

IS (~6000 -$12,000/day (4 yield a gross
—— ‘ dependlng on T) revenue of ~$100k/day

Modified from image courtesy
of Gene Suemnicht, EGS

26 Boden 2023
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Geothermal Energy’s Value

» Base load electrical power generation ,
_ _ Geothermal Energy’s
» Green H production during offpeak FULL POTENTIAL

* Integrated with solar PV and thermal

- E.g., Stillwater and Tungsten (4] (2
Mountain hybrid geothermal-solar PN N\ Lo e, o
power plants, NV

 Direct use heating and cooling (~40%
of energy used in U.S. is to heat
water and heat and cool buildings)

* Green lithium extraction and
desalination

 Energy storage and CO»
Sequestra’[ion Graphic modified from NREL: https://www.nrel.gov/news/features/2023/full-steam-ahead-
unearthing-the-power-of-geothermal.html|

27 Boden 2023
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Geothermal Energy Attributes

1. Base load power (available 24-7 unlike wind and solar);
* New technology allows for load following and dispatchable energy

* 90%+ capacity factors (ratio of energy produced over a given time; only nuclear is comparable)
« Solar and wind capacity factors typically 25-35%; coal- and natural-gas-fired power plants about 50-
70%

2. Sits on top of energy source;

* No fuel price exposure; price certainty; insulated from price volatility;
3. Proven resource, mature technology (dating back to 1913 in Italy and 1958 in NZ);
4. Can provide dispatchable power (load following);

« Puna geothermal power plant, HI can ramp up or down from 22 MW to 38 MW at 2 MW/min

 During off peak periods when intermittent renewable sources are abundant, geothermal can use

its base load electricity to make green H or use produced power for pump hydrostorage
28 Boden 2023
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Geothermal Energy Attributes

5. Economic impact on construction/operation: number of jobs per MW;

» CalEnergy Salton Sea: ~390 MW; ~240 employees (about 1 employee for every ~1.6 MW produced)
« Comparably sized natural gas plant: 15 employees; commercial solar/wind plant: 10-15 employees (1
employee for every 25-34 MW produced)
6. Minimal environmental impacts:

« Minor or no greenhouse gas emissions
« Conventional geothermal flash plant releases only 2% GHG emitted by NG-fired power plant

« Binary plants have ZERO greenhouse gas emissions

« Small footprint for power produced (1-3 acres/MW compared to an average of 85 acres/MW for wind
(NREL/TP-6A2-45834, 2009) and about 10 acres/MW for solar (https://betterenergy.org/blog/the-
true-land-footprint-of-solar-energy/)

« Land available for multiple use

29 Boden 2023
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GEOTHERMAL FOOTPRINT
IS SMALL - '

L
11l
JNEN :

e At McGinness Hills, NV about 1 acre is required for
every MW

* Solar PV requires about
10 acres/MW?* (varies depending on latitude,
efficiency of installed panels, time of year, and
setbacks and zoning restrictions)

2 Miles

*Does not include storage facilities

for round-the-clock power Modified after image courtesy of
availability as with geothermal. If P. Thomsen, Ormat Technologies
so, then then solar footprint

increases to about 15-20 acres/MW

30 Boden 2023
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Land Available for Multiple
Use

§ Miravalles geothermal
e field, Costa Rica. After
%= DiPippo, 2012 |

Geothermal plant in Imperial
Valley, CA. Source: NREL Image
Gallery

Blue Lagoon Spa at Svartsengi
geothermal plant, Iceland

Boden 2023 grc2023.mygeoenergynow.org | geothermal.org
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Challenges for Geothermal Development

1. Currently developed geothermal systems are location restricted
* Presently biggest problem for more widespread geothermal application
« Require a special orchestration of geologic processes not widely met:
 Elevated heat flow
« Permeable rock reservoir
« Ample supply of water and recharge
« Conditions most commonly satisfied near boundaries of tectonic plates or widely
scattered geologic hot spots, like Hawaii or Yellowstone
 Solutions include:
« Develop more widespread hot dry rock by creating artificial reservoirs (EGS) } Discussed

- Enhanced drilling technologies, such as downhole heat exchangers and cased [
lateral drill legs

32 Boden 2023
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Challenges for Geothermal Development

» 2. Higher cost compared to solar PV and wind

» Reflects higher risk and expense to develop geothermal resources

Levelized PPA Price (2021 $/MWh)

140
Historical | Projected

120
Based on empirical analysis, PV+S (100%) is

100 set at a $10/MWh premium over PV+S (50%)

N ~$55/MWh
80

Wind N /
60

PV4S (100%, 4-hour) e b,

40 \- == ~S 3 6/M W h
PV+S (50%, 4-hour) > — e
20 A ALLLLLLL LT T P P

Modified after

0 Bolinger et al., 2023

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

A solution: Policy intervention to promote non-intermittent renewable energy sources
* e.g., 2021 CPUC Energy Procurement Order requires an additional 2000 MW of geothermal by 2035

« Expand oil and gas exploration efficiencies that currently do not require EA or EIS under NEPA to
include geothermal

33 Boden 2023
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Challenges for Geothermal Development

.

* 3. Induced Seismicity

Can occur from both production and injection of
fluids (rock contraction from withdrawal of fluids
and cooling during injection)

Generally small magnitude events, mainly <0
to about 2 (most can’t be felt)

Largest at The Geysers about 4.5M; largest on
record is Pohang event in South Korea at 5.5M

Basel EGS project cancelled due to a swarm of
EQs (largest being 3.4M related to injection
during reservoir stimulation in 2009

Solution:
* Inject at lower rates

« Spread injectate (via drill legs) over a larger
volume of rock limiting pore water pressure

in any given fracture to retard large slipping

et GEOTHERMAL RISING CONFERENCE
OCTOBER 1-4, 2023 « RENO, NV

Number of Seismic Events

Northwest Geysers Enhanced Geothermal System Demonstration
Seismic Events/Day
| 1000 gallons/minute |
[

Note general decrease

in frequency with time

_4' 400 gallons/minute

(

—— e — " —— ———

Nov s v

20
2

Nov mm ~

1

Q Q \
O O 6
p
4 2 4I5 3 5
11 I I

1l. 0
2222222528888 888888884888448
A AT IO O N DADS AN H FHINOMNDADS N HLN O N D A
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Challenges for Geothermal Development

* 4. Potential degradation of surficial
hydrothermal phenomena

« Geysers, fountaining hot springs, thermal pools can
dry up if geothermal reservoir improperly managed;

» Geyser Valley NZ in the 1950s and today
» https://teara.govt.nz/en/video/5437/geyser-valley-1950s

» Today only whiffs of steam observed. Why?

« Consequence of Wairakei not reinjecting effluent for
about 30 years

« Solution:
« Reinject effluent into reservoir to maintain fluid pressure

« May require make-up water to account for water loss
from evaporative cooling towers, e.g., The Geysers

» Use closed loop binary technology and air condensers
(fluid conservative) = e.g., Ngatamariki, NZ (100 MW
installed capacity)

35 Boden 2023
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Geothermal system development worldwide
(ConyventionalSystems)

Great Basin

763

/ 1300

38 / 960 .
622

29 944 1680

San Andreas
2,400

1005

Total: ~16,100 MWe (As of January 2023)

Little recent volcanism in the Great Basin makes our
geothermal systems somewhat unique

Installed Capacity (MWe) in Blue}

70° =

Note correspondence between distribution of
geothermal systems and boundaries to tectonic plates

36 Boden 2023
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What Makes the Great Basin and Nevada
so Prospective for Geothermal Energy?

* Crust is being stretched and
thinned
* Results in high heat flow

 Hot rocks of mantle are closer to
surface

» As crust is stretched, rocks
break to make fractures (faults)
* Allows for deep circulation of L 0

fluids and conduits of good (After Blackwell and others)
permeability

T at 6 km depth
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Geothermal v Do Seunon G
Systems in R I
Nevada & Great
Basin, USA

D <
w

« 2023 Great Basin —< %
Geothermal Power A=

Plant Capacity is ~1300
MWe

° NV —_ 8 27 I\/IWe frOm 26 * Power Plants ,/A 3 ” g::;;dary of Great
pOwer plants Geothermal Systems % i 0 i A ge
. @ >160deg.C iRy ourtesy o
> anet - ~580 Mwe @ 100 - 160 deg. C "ﬁ ‘l‘ \{‘ ,'; ;’5’%&} 00/bauq

[ Rhyolites < 1.5 Ma
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Exciting Emerging Pursuits

« Generating Artificial Geothermal Reservoirs (Engineered Geothermal
Systems or EGS)

« DOE’s FORGE program
* Fervo Energy’s Project Red at Blue Mountain, NV

« Developing Hot Sedimentary Aquifers

* Repurposing oil/gas wells for coproduction or depleted wells for geothermal
« Harnessing Superhot/Supercritical Geothermal Reservoirs

 Using Supercritical CO,

« Applying Closed-Loop Technologies

« Recovering Li From Geothermal Brines ("Green Li”)
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Temperature (°C)

Exciting o s w1 20 2 w0
Emerging Ls DIRECT
Pursuits r '
(EGS) |

'BINARY
PLANTS

Depth (km)

Boiling Point Curve

Modified after Moore
and Simmons, 2013
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Engineered Geothermal Systems (EGS)

« Artificially generated convecting hydrothermal system. How?
* Inject water deep underground (3-5 km)
« To improve permeability via thermal shocking (hydroshearing) and hydrofracking

» Hot rocks contract and fracture when exposed to cold injected fluid improving permeability (hydroshearing)
» Hydrofracking fluids pumped down under high pressure to stimulate fracture permeability

» Fracture permeability achieved in stages via zonal isolation (using bridges and plugs) to maximize size of
engineered reservoir

» Upside:

« Have the potential to increase current geothermal power output by 1 to 2 orders of magnitude
(Tester et al., 2006). Why?

» Hot rock is much more widely distributed than hot rock with circulating water (currently developed
conventional systems)

» Much less restricted to specific geological favorable regions, such as along and near plate tectonic
boundaries

« Significant reduction in CO, emissions by displacing fossil-fuel-fired power plants by making
geothermal power more widespread than currently developed
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Temperatures at 5.5 km

EGS
Resource
Base
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Heated fluids are recovered at
the surface for energy production

Power Plant

Productton
Well

Injection
Well

““1

Fluids are
injected into

‘ the earth for
/ continuous

energy
recovery

Heated fluid is

produced back
/ to the surface

Source: DOE, GeoVision Report, 2019

(https://www.energy.gov/sites/defa

ult/files/2019/06/f63/GeoVision-full- Wl
repo rt-o p t. pd f ) resulting in an EGS resgw@ir/
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Image from:
EGS (DO E-Su ppo rtEd FO RG E https.//utahforge.com/laboratory/
geoscience/
UTAH ¥
Venture) .
* Located in southwest Utah [ %
e O elta 4 A
* Nearby operating geothermal power = 3 ¢l
plants are: 7 7S :r
 Thermo (14.5 MW-binary) g f gre bed s ;ff’,jf?it,l_ 2
e Roosevelt or Blundell (34 MW- /gl /F fgv*tr‘i‘f,;_'.:;"c
integrated flash-binary) Monr
U ah FO GE i/ s
* Cove Fort (25 MW-hybrid binary- fﬁ \_@B ol lsgf:?)seph 2
hydroelectric) Ry c’%fg 274
* Goal to develop a productive geothermal
reservoir in impermeable granitic rock
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EGS (DOE-Supported FORGE Project) Utah FORGE

Wind Farm

* Injection well shown in blue; production well shown in i e
red. Physical separation of two wells in reservoir ~150 m.

 Each well drilled over a period of 2.5-3 months with TD
in each well of about 11k feet (~8000 ft deep with about
3000 feet lateral legs

 Bottom hole T about 230°C, reservoir T 175° to 225°C
* Injection well stimulated in 3 stages

« Demonstrated permeability connection between
injection/production wells in granite host rock in July

~
N
Kilometers

2023
Fig. courtesy of
e Future WOFkZ C. Jones and J.
« Stimulate injection well in ~7 stages (winter 2024) e, (RIS

* Begin multi-week circulation tests (spring 2024)
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Fervo Energy: Blue Mountain EGS Prolect
Nevada

« Successfully drilled injection/production well
doublet (7700 feet vertical and 3200 feet lateral
legs) outside of extant hydrothermal system in
about 6 months

 Stimulated both injection and production wells in
multiple stages to artificially create a fracture
controlled permeable reservoir

« Thermal modelling studies suggest about a 10-
year lifespan at the current rate of injection and

: ; Wells %, Modified
production am e 1km f
M S ¢ T g e s 4’ S R e - ) s after
UTMBSZIIN /i | Fercho et
*  Normal Fault Dip Dir ——— Fault, Certain Lithology Wells 0 05 1
= Strike-Slip Arrows - Fault, Certain, Concealed Quaternary Sediments © Fervo i3 ? al., 2023
X 1

wmm Silicified Fault Breccia =——?— Fault, Possible Triassic Metasediments Previously Drilled Kilometers
sible, Concealed = Fervo Lateral Wellpaths
—— Existing Wellpaths
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Fervo Energy EGS Proiect at Blue Mountain, NV

Vertical monitoring well

* Injection well stimulated in Plan View  ihiberyenind s
16 stages ") =B
 Dots are microseismic events
color coded to the stage of R\ ek
stimulation
* Resounding technical success et | b ISR !J X-Section View  lrsas
* Pair of wells capable of WIth Ut shior s, %" ol AF
producing 80 kg/s of fluid . : . i o Behing casng
at 175°C to 190°C which - = (¢
yields about 5.1 MWe 1000 ft . '
(Fetchko et al., 2023) ST |
 Economic? Not yet Figures after Norbeck e LR T e ~ .
(~$10M/MW v. ~$1M/MW et al,, 2023 R YR g
for conventional geothermal Wb IR B .
wells) 1000 ft
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Engineered Geothermal Systems (EGS)-Challenges

 Financial: Must drill deeper with deep horizontal legs which are expensive

« Water: A large source of water needed to pressurize reservoir, especially for
creating a permeable reservoir large enough to fuel a geothermal power plant of
impactful size (> ~100 MW)

 Potential Induced Seismicity: Injecting cold water causes hot rock to fracture
creating small earthquakes (good for permeability) that may be felt by people

« Heat Recovery Over Time: Imperfectly known on the time frame how repeated
injection of relatively cool water will lead to cooling of the reservoir

« Changes in Permeability Over Time: Changes in pressure and temperature can
cause fluids to precipitate minerals in fractures as they circulate from injection to
production wells
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Hot Sedimentary Aquifers

* Deep (3-5 km) rock layers having good permeability
* Occur in areas having elevated heat flow (=90 mW/m?)

« Have large surface areas of >100 km? compared to <10 km? of
currently producing fault-controlled systems in Nevada

* May serve as a bridge between conventional systems and EGS
* Potential to provide hundreds of MWSs of power
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Hot
Sedimentary
Aquifers

50

Depth (km)

0 -

Temperature (°C)
0 50 100 150 200 250 300 350
A 1 ' A A A
HEAT
LAl DIRECT

= BINARY

PLANTS

| Modified after Moore
and Simmons, 2013
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Hot Sedimentary &= e
Aquifers Ui e i

 Require permeable sedimentary layers

at depths of 3-5 km in regions of A ' 4
elevated heat flow (orange areas >90 | | Beowawe® e Blagtial )
mW/m2) to achieve power generation i © #Ldi V"‘"eyf | 195 ) ’
temperatures of >150°C. *i.%*'ii}/a"e,v SR ""; N
Potential aquifer basins include: L . Steptoe ;(“

* Elko and Steptoe, NV bae

* Black Rock Desert and Pavant

Butte, UT

Eiko Basing

Modified after o F D R aidiers Operating ¥
Simmons et. al., 2017 35 | S LT A geothermal plants o

Boden 2023 grc2023.mygeoenergynow.org geothermal.org




GEOTHERMAL RISING CONFERENCE

GRC"*“*;"iB QCIOBER 1-4, 2023 « RENO, NV

Hot Sedimentary Aquifers

 Schematic Cross Section

elevation m

2000 -
1000

-1000 —
-2000 —

springs 5 springs
Qal .................................... .———‘/
T: 121
’ EGS / Ti Hot sedimentary aquifers i
N— Fault-related hydrothermal systems ———/ Z‘{tezf 051"';7"7005 et.

0 5 10 km

Note the large surface area of hot sedimentary aquifers
compared to fault-related geothermal systems developed
by current geothermal power facilities in Nevada
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Repurposing oil/gas wells

. : WELLS OF
Coproduction OPPORTUNITY

« Reconfigure wells to coproduce Oil Wels or Clean Eneray
hydrocarbons and geothermally . s o oo oo
heated water

» Heated water applied for direct BEFORE
use to heat and cool buildings |

T —— " WELLS OF
e OPPORTUNITY

Retrofitting Abandoned r

° Depleted Oll/gaS We”S Oil Wells for Clean Energy I. -.I

¢ Depending on T, reSiduaI Water in Graphic modified from NREL publication 888 88, a0, m-smg_:m ol
reservoir can be used for: Full Steam Ahead: R v oo S —

https://www.nrel.gov/news/features/20
e Direct use, if hot enough (>~40°C) 23/full-steam-ahead-unearthing-the-

power-of-geothermal.html
* A geothermal heat pump
(geoexchange system)
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Temperature (°C)
0 50 100 150 200 250 300 350
0 | | | | | | | 0
N
H Ot Pet o I eum N\ | eeothermal
: 000 AN e
Aq u Ife rs \\ :‘::;S:i‘:;md high temperature - 5000
\ (pumped wells) hydrothermal reservoirs
2000 - \ \ (self-discharging wells)
traditional
Developing hot strgtlgraphlc = 3000 oo 3\ PR o 10000
petroleum reservoirs for s \ O\ T\ (J_;L’j:;f;f:g'f g £
geothermal purposes is 2 1000 v\ q\‘\ reservoirs (sgr) g
analogous tq water flooding in \ R omiee 15000
secondary oil recovery — 5000 - \ o
except we are sweeping \ _—
heat, not oil. 6000 2\ %, %, - 20000
7000 ‘ ‘ ‘ ‘
From Schelling et al., 2013; slide courtesy Rick Allis 0 100 200 300 400 >00 600
: Temperature (°F)
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Superhot/Supercritical Geothermal Systems

» Being explored by Iceland Deep Drilling Project (IDDP), Supercritical Geothermal
Project in Japan, Geothermal: The Next Generation in New Zealand, and NREL'’s

DEEPEN Initiative in the U.S. A
« What is supercritical water? o
; ritical point

* Fluid with properties intermediate 2t

between liquid and gas (density of liquid
ey Water
but mobility of gas)
* No surface tension at these conditions
resulting in high buoyancy to viscous
forces and mass transfer

0.06
« Well tapping supercritical reservoir would / Steam
have 5x —10x power output of a

conventional well

« 5to 10 times fewer wells L
needed, saving ~$30M-$60M 0% 100 374

Ice

[aa—y

Pressure (atm)

Triple point

Temperature (°C)
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Superhot/Supercritical Geothermal Systems

« IDDP-2 Well, Reykjanes, Iceland
* Drilled to a vertical depth of ~4500m
« T > 426°C, P=340 bars at TD |
» These T and P values exceed super- |
critical conditions for seawater
(Cp = 406°C, P = 298 bars)
 After ~2 years of flowing cold water to
stabilize well and stimulate reservoir
only achieved a few kg/s wellhead flow

» Casing failure, inferred blockage at depth, [ it
and likely diversion of upwelling fluids into  EEYEZLR Ra T 1A
fracture zones
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Superhot/Supercritical Geothermal Systems

« Schematic
View of
IDDP-2

Post-glacial

Conventional we

Sheeted dike complex

Modified after
Fridleifsson et al.,
2017

Gabbroic lower crust
Primitive melts

(b)
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Using Supercritical CO, (ScCO.,)

« Advantages:
» 3x-5x higher mass flow rates than water B Foritical >
(Coz

» Large density contrast between cold and hot
ScCO, means strong buoyant forces ZE () P ——
reducing power consumption for pumping

+ Can help sequester CO, produced from
fossil-fuel fired power plants

* Less scaling or corrosion of equipment as
ScCOs is not an ionic compound

« Challenges:
* Getting CO, from power plants or extraction
from air is currently expensive Normal
« Ave. coal-fired power plant emits 2.5Mt of ; ,
CO,lyr; capture CO, costs ~$50/t>$125M! T —
 Unknown possible reactions with wall rocks Temperature (°C) ——>
and water at depth that could precipitate s
carbonate minerals reducing permeability
58 Boden 2023
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Closed-Loop Technologies gy

 Two different configurations being explored: @

1. Modify existing nonproductive wells
(GreenFire’s GreenlLoop technology)
He[;(t)\glgc?\grneger

« 2. Drill deep well with multiple laterals at depth to
extract heat (Eavor technology) (0BHX)

Surface system

Feed zones —— <«—— Feed zones

¢ GreenLOOp TeChnOIOgy - Geothermal
- S e fluids from
« Utilizes down borehole heat exchanger L0 e S
fluids fluids heat to the
DBHX and

* Induces convection outside of borehole

condense on

the outside of

« Mainly for steam-dominated and 2-phase X 0o ' %7 thoDBHX
geothermal reservoirs
. _Condensed geothermal Source:
« Steam condenses on outside of borehole fluids descend to the bottom , .
. vy . . . of the DBHX and recirculate  https.//www.greenfireenergy.
transferring additional latent heat to injected fluid back to the reservoir. o /o reenioop-technology,/

from that provided by conduction alone

59 Boden 2023
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- Deep Lateral Wells Configuration (Eavor Technology) Closed-LOOp
 Afluid with a low boiling point is injected into a series of piping |
laterals at depth where it picks up heat to return to the surfaceto TeCh nOIOQ 1€S

fuel a power plant and then reinjected

: [ )
{ 4 4 ‘( ;
¢ {

» Potential Advantages:
« Can be applied anywhere (scalable)
* No need to find zones of natural permeability

 No need to artificially induce permeability via First Commeﬁcial |
rock fracturing (EGS) deployment in Gerestreid,

- Avoids potential problems of producing from geothermal fluids B ooy b orgling 3-4km
(scaling and corrosion of equipment) beginning in July 2023

* No added or make-up water needed

 Potential Challenges:

 Potential cooling of working fluid with time (working fluid heated
by conduction (slow heat transfer) compared to convection)

« Initial high cost due to technologically advanced drilling

’ 4

technology (deep lateral well configuration and casing) Source: Eavor,com
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Li From Geothermal Brines

» Salton Sea geothermal field in SE CA
has an installed geothermal power
capacity of about 440 MW from 11
power stations

« Salton Sea geothermal brines contain
250,000-300,000 ppm TDS
* Enriched in Mn, Zn, Ag, and Li

 Li concentration as high as 440 ppm;
average ~200 ppm (Neupane and Wendt, 2017;
Humphreys et al., 2023)

- — —

Pacific
Modified after / Ocean
Hulen et al, 2002 \ ~Sokm
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1’%
¢ ““Shallow, thermal-

gradient boreholes POV

3 MILES
e ™.
5 KILOMETERS

00 k)Deep production,
exploration, a

Li From Geothermal Brines el @

. CI—Yr Energy’s 55 MW Featherstone B e
(Hudson Ranch) Power Plant * %

 Produces about 480,000MWh electrical energy
per year

« Gross annual power revenue ~$25M—-$30M

* Energy Source Minerals pursuing development
of Li recovery plant on site to yield a planned

19,000 tons of LiOH/yr slated to begin operating
in 2025-26

« Current price of LIOH (9/29/2023) is
$26k/tonne>gross revenue ~$500M/yr!

« A 100 kWh Tesla battery requires the Li content
held in ~50kg of LiOH

« Above planned production of LiOH would be
enough to make ~380,000 Tesla batteries/yr

'y
210

33°10° -

A
7
e f ®
’
o \ EXTENT OF SHALLOW
> THERMAL-GRADIENT

| ANOMALY (>200°C/km;
| 30-80 m DEPTH)

/

115°37°30"
.

7 . [BOREHOLE CONTROL |
2 | —
Modified after

Hulen et al, 2002
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Li From Geothermal Brines

Geothermal brine DLE: smallest footprint: closed-loop process, no huge evaporation ponds, no blasting, no pits.

PERTONNE LCE

' ' Chilean salar brine: — -
®. 3,100 acres Li filter
" | added to
LAND USE Australian hard rock: existing
BASED ON ACRES 465 acres geothermal

plant

SOLAR EVAPORATION
SPODUMEME

GEOTHERMAL Resources

Note small footprint of CTR

geothermal Li recovery

Slide modified after McKibben,
2023 =
(https://lirric.lbl.gov/2023/03/m E

arch-15-michael-mckibben- -
usriverside/ accessed 09/25/23)

V.
Vs
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Recovery of Li from
geothermal brines will
be least destructive and
most environmentally
sound of current Li
production methods
including:

* Hard rock mining

* Salar brines of SA


https://lirric.lbl.gov/2023/03/march-15-michael-mckibben-usriverside/
https://lirric.lbl.gov/2023/03/march-15-michael-mckibben-usriverside/
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Li From Geothermal Brines

« Salton Sea geothermal field has a resource potential of 600,000 tons/year of
Li carbonate (Li,CO3) equivalent (cec Report, 2020: https://www.eneray.ca.qov/sites/default/files/2021-05/CEC-500-2020-020.pdf)

 Rivals entire 2022 global production of 680,000 metric tons of lithium carbonate equivalent

» Above Salton Sea Li resource potential is enough to make about 18M 100kWh Tesla batteries/year

« Estimated total resource ranges between 4 and 21M metric tons of lithium carbonate equivalent (McKibben, 2023)

 If realized, the Salton Sea Li resource would produce about 7—10 times the planned production of Thacker Pass Li
open-pit mine (projected 40k to 80k Mtpa of Li,CO45 — largest identified minable clay-hosted Li resource in NA)

« Depending on the price of Li carbonate of estimated resource, a potential revenue of $7B to $30B per
year could be realized

 Effectively lowering price of geothermally produced power
 |Infusing much needed prosperity for an economically depressed region

« Dramatically increase domestic production of Li— 90% of which is currently imported from Chile and Argentina
(Source: https.//www.energy.gov/eere/vehicles/articles/fotw-1225-february-14-2022-2016-2019-over-90-us-lithium-imports-came)
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Agenda (Epilogue)
« What are current sources of electricity and how are energy and power related?
* Where does Earth’s heat come and how does heat move?

« What is geothermal energy and how does depth and temperature impact use of
geothermal energy?

« What criteria are needed to make a geothermal fluids viable for development?
 What are some key attributes and challenges of geothermal energy?

* Where are most developed geothermal systems found?

« What makes the Great Basin so prospective for geothermal energy?

« What are some exciting new technologies for expanding geothermal energy,
including recovery of critical minerals?
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