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ABSTRACT

Drilling cost-efficient, safe, and deep wellbores is key to scaling geothermal energy. However, the
elevated costs associated with high non-productive and invisible loss times (NPT/ILT) are taxing
on the operators, acting as a severe bottleneck in utilizing geothermal energy. In deep geothermal
wells, the leading contributors to NPT/ILT are the failure of downhole tools and/or absence of
their measurements.

Continuous downhole parameter measurements are often hindered by mud circulation
interruptions or downhole tool failures caused by high operating temperatures. During drilling
operations, the mud temperature fluctuates due to its thermal interaction with the surrounding
environment, which is typically hotter. This variability is particularly pronounced during activities
such as connection and tripping, when mud circulation and downhole measurements are
unavailable. Estimating temperature distribution along the wellbore before deploying costly
downhole tools is critical to mitigate the risk of failure. Furthermore, developing an effective
strategy to cool the mud relies on factors including circulation rate, duration, and inlet mud
temperature.

In this study, we introduce an approach that combines physics-based modeling and machine
learning techniques to achieve real-time prediction of mud temperature distribution. This method
aims to enable precise and continuous estimate of mud temperature along the wellbore, facilitating
more efficient well thermal management. An automated calibration system tailored for adjusting
parameters within the physics-based hydrothermal model was also developed. This calibration
process is designed to enhance the accuracy of the model and further improve the performance of
the monitoring system. The calibration system is smartly triggered by Discrete Event Simulation
(DES) technique as and when operational conditions change on the rig. The advisory system
synergizes with the monitoring system to suggest optimal mud circulation durations and flow rates.
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These recommendations are tailored to the inlet mud temperature, thereby ensuring precise control
over the targeted temperature profile within the wellbore.

Our approach has been validated using select cases from the Utah FORGE dataset for which
wellbore temperature measurements were available. Our real-time monitoring system was able to
estimate the mud temperature profile along the wellbore after prolonged stagnation of mud inside
the wellbore due to other operations like connection and tripping when bottom hole mud
temperature measurements were absent. The automatic calibration technique proved efficient in
updating uncertain model parameters to provide improved predictions. Ultimately this approach
can drastically improve temperature monitoring and management during the construction of a
geothermal well and reduce tool failure.

1. Introduction

Geothermal energy is one of the leading candidates for providing a clean energy infrastructure.
However, drilling deep wells to extract necessary heat energy poses a distinctive challenge: the
intense temperatures encountered during the exploration of deep underground reservoirs. During
the drilling process, drilling mud — an engineered fluid — is circulated through the drill string and
up to the surface through the annulus. Drilling mud is essential to maintain pressure inside the
wellbore, removal of rock cutting and lubrification, among others. They also act as a conduit for
mud pulse telemetry (MPT) for data transmission while drilling from the expensive downhole
tools. However, the elevated temperatures encountered in geothermal wellbores lead to increasing
wear and tear of downhole tools (Mitchell & Miska, 2011) and thus elevating the risk of tool failure
(Kruszewski & Wittig, 2018) leading to lack of critical wellbore information for an efficient
drilling operation.

Estimating bottom hole temperature is paramount in geothermal wellbore construction and
numerical simulations using finite element models (FEMs) and finite difference methods (FDMs)
can be utilized, but their computational burdens often limit their real-time application (Chen &
Novotny, 2003). Reduced order models such as analytical models (Hasan & Jang, 2021) and semi-
analytical models (Polat, 2022) offer reduced computation effort but compromises on accuracy
due to simplifying assumptions that overlook crucial factors like complex wellbore geometries and
transient thermal behaviors. Data-driven machine learning (ML) models pose certain drawbacks
such as heavy reliance on data quality that are generally lacking and their transferability to new
scenarios can be challenging (Kshirsagar & Sanghavi, 2022). An improved approach is necessary
to overcome the current approaches requiring static input requirements rendering them impractical
for real-time decision-making during a dynamic drilling operation (Gonzalez Angarita, 2020)
where the rig states and operational parameters (mud flow rate, drill string rotation, location of bit
with respect to hole depth, etc.) change quite frequently. In this study, a Physics-Informed Machine
Learning (PIML) model is proposed offering a combination of physics-based FDM model (Hasan,
Kabir, & Sarica, 2018) with real-time data suitable for predicting mud temperature distribution
along the wellbore.

The strength of using FDM models in simulating heat transfer within wellbores lies in discretizing
the wellbore geometry into a grid, allowing for the precise evaluation of heat conduction,
convection, and radiation across each individual point (Holmes & Swift, 1970) by considering
influencing factors like fluid flow dynamics, formation properties, and frictional heating (Zhang,
Xiong, & Guo, 2018). The resulting temperature profiles offer detailed insights into the thermal
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landscape within a wellbore (Zhou, 2013). However, FDM models rely heavily on accurate input
parameters, including rock and material thermal properties, fluid rheology (Merlo, Maglione, &
Piatti, 1995), and wellbore geometry (Hasan, Kabir, & Wang, 2009). In reality, the input
parameters come with significant uncertainties due to limited downhole measurements and indirect
measurements from historical drilling operations, introducing potential discrepancies between the
model predictions and real-world temperature profiles. Although computationally expensive,
calibrating these models is necessary, commonly based on iterative trail-and-error approaches,
until the simulated temperature profiles match the measured values at certain locations, like mud
temperature at the wellbore outlet (Tekin, 2010). In this work, a calibration technique suitable for
geothermal wellbore temperature estimation that is computationally efficient for real-time
applications is utilized. The hydrothermal model presented in the next section was introduced in
Naderi et al., 2024 and repeated here for improved readability.

2. Hydrothermal model

2.1 Governing equations

The borehole is modeled to capture thermal interactions between the wellbore and the surrounding
rocks. The model is built on the following key assumptions: (i) the drilling fluid is treated as
incompressible, maintaining constant density, specific heat capacity, and thermal conductivity;
and (ii) the velocity of the drilling fluid inside the drill string and annulus is considered solely in
the axial direction, while the radial velocity is disregarded. Governing equations (1) to (5) describe
the heat flow in the fluid inside the drill string, the drill string pipe, the fluid in the annular space,
the first layer of casing, and the casing/cement/surrounding formation, respectively and are
detailed in the literature (Zhang, Xiong, & Guo, 2018).
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Here, r and z denote radial and axial coordinates, respectively. In Equations (1) to (4), the subscript
numbers follow the layer order illustrated in Figure 1a, while the subscript i in Equation (5) denotes
the layer number in casing/cement/surrounding formation. While a constant spacing is considered
in the axial direction, a gradually increasing mesh is considered in the radial direction, whose
schematic is shown in Figure 1b.
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Figure 1: (a) 2D schematic of a coaxial borehole heat exchanger, and (b) schematic of a 2D cross section
through 3D model of the discretization of FDM grid. (Adapted from Naderi et al., 2024.)

In the context of the equations, T, h, A, ¢ and p represent temperature, convective heat transfer
coefficient, thermal conductivity, specific heat capacity, and density, respectively. The

conductivity coefficient between layer i and i + 1, denoted as AZ’}J}ictive, is calculated using the

thermal-electrical analogy (Brown, Cassidy, Egan, & Griffiths, 2021), employing the following
formulation:

1 1

1
Refrective = » Reffective = Ri + Riy1 = A + A1 (©)

Aeffective

This expression signifies that the thermal resistivity of the effective layers can be considered
analogous to electrical resistivity in series. The next section details the calculation of g, and qq,
representing friction-induced heat source in drilling pipe and annular, respectively.

2.2 Source terms

The calculation of the friction-induced heat source involves considerations of fluid dynamics
within the drilling pipe and the annulus (Zhang, Xiong, & Guo, 2018). Numerous empirical and
analytical models exist for this purpose. Here, the Reynolds number (Re) as a crucial parameter is
defined as (Durst & Arnold, 2008):

_ pvDn
Re = P (7)

where p is the dynamic viscosity of the mud, and D, and v are the hydraulic diameter and fluid
velocity respectively. It should be noted that for the annular flow, Dy = 4 (d3 - d2)/(d; + d,),
where d5 represents the diameter of the wellbore, and d, is the outer diameter of the drill string.
For laminar flow (Re < 2000), the coefficient of friction resistance (f) is calculated as:

f=lo ®)

In turbulent flow (Re > 2000), f is determined using the empirical Darcy friction factor equation:
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1

in 4log(Re4/f) — 03.95 9)
The frictional resistance pressure drop in the drill string is then computed using:

AP 2 fpvs

AL~ d, (10)

where L denotes the flow distance of drilling fluid. Similarly, in the annular region, the pressure
drop is determined by:

AP 2fpvi
AL~ ds—d, (11)

Finally, the heat source term (q) in Equations (1) and (3) is quantified by:

_ Are
= (12)

where Q is the volumetric flow rate of drilling fluid.
2.3 Boundary and initial conditions

The initial temperature in the formation is determined by a linearly increasing geothermal gradient
(G). Although a linear, continuous relationship is assumed, adjustments like including stepwise
changing G can be made in the assimilation process, as discussed later in the following sections.

The inlet temperature is known and can be measured directly on the ground:
T1(z=0,t) =T (13)

At the bottom of the well, the annulus drilling fluid temperature is equal to the drilling fluid
temperature inside the drill string and the drill string temperature:

Ti(z = zp, t) =Ty (z = zf,t) = T3(z = z5,t) (14)
where z; is the vertical depth at the bottom of the well. There is no heat exchange between the
formation and the atmosphere at the surface:

ot
|

Tlimo=0 (1)

The formation temperature far away from the wellbore is undisturbed and is equal to the initial
formation temperature. This condition is described at 77, the end of the rock domain in the radial
direction:

aT
Elr—mf =0 (16)
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2.4 Numerical solution

An implicit numerical method is implemented for the FDM employed in this work. Details of the
implementation are adapted from (Zhang, Xiong, & Guo, 2018). This in contrast with the authors’
earlier work (Naderi et al., 2024) where an explicit numerical scheme was implemented. The
current approach is preferred for issues related to numerical stability while handling the real time
data — streaming from the electronic drilling recorder (EDR) and/or the mud logging units. The
FDM employed in this work for solving the governing equations utilizes a first-order forward
difference scheme for temporal discretization and a central difference scheme for spatial
discretization.

2.5 Sensitivity and observability

The primary objective of this work is to estimate the bottom hole temperature during geothermal
drilling operations to better protect the downhole tools from thermal failures. The aforementioned
hydrothermal model is dependent on several input parameters with high uncertainties and their
perturbations can cause large impact on the estimation of bottom hole temperature. Thus, a
preliminary sensitivity analysis is carried out. Since, geothermal gradient is not accurately known
a priori to drilling a well, its sensitivity is numerically studied through trail-and-error approach.
Two different scenarios are considered in this study: short circulation duration of about 3 hours
(see Figure 2) and long circulation duration of about 2 days (see Figure 3). In addition, during the
short circulation scenario, the geothermal gradient was changed at half-time, i.e., from 0.02 to 0.4
at 1.5 hours of circulation. The simulation parameters for this analysis are provided in Table 1. In
all scenarios, the following observations hold:

1. The wellbore temperature profile is strongly dependent on the initial geothermal gradient.
Any nominal variations in the gradient does not affect the bottom hole temperature
estimation. Thus, initial model calibration when the required information is available or
extracted from the real time data plays a crucial role in utilization of the hydrothermal
model for temperature management system.

2. For a given variation in the geothermal gradient, changes in the outlet mud temperature
were insignificant and changes in the bottom hole temperature were only slightly better.
This leads to our hypothesis that geothermal gradient is not observable when only surface
temperature is considered as the system measurement and bottom hole temperature is a
necessary measurement during the calibration process.
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Figure 2. Evolution of the bottom hole temperature (a) and the mud outlet temperature at the surface (b)
during a short circulation scenario of 3 hours, for various geothermal temperature gradients (G).
Changing G from 0.02 to 0.4 at 1.5 hours of circulation time shows no variation in the temperature
evolution for both the parameters.
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Figure 3. Evolution of the bottom hole temperature (a) and the mud outlet temperature at the surface (b)
during a long circulation scenario of 2 days, for various geothermal temperature gradients.
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3. Model validation using UTAH Forge dataset
3.1 Data handling and calibration technique

As schematically illustrated in Figure 4, this engine comprises two distinct compositions, as
already introduced in Naderi et al., 2024.:

1. Static Data-Based Model: This model component provides the initial condition to the
dynamic model. When necessary, steady state solution can be utilized to transit to the
transient simulation of the wellbore thermal dynamics. Since this segment is independent
of considering input data in real-time, the choices for simulation time-step and techniques
like implicit or explicit approach are open but must be suitably chosen to align with the
thermal system’s overall dynamics.

2. Dynamic Data-Based Model: Starting from the static-data based model simulation results
as its initial condition, this model segment integrates live measurements into its simulation.
Data assimilation, a critical process fusing observations with model predictions is
operational to integrate real-time measurements and dynamics. The time step for this
dynamic model aligns directly with the data frequency (here, 1 second) of the thermal-
hydro model, ensuring continuous synchronization with real-time conditions.

Contextual On change
data
dtatate dtupdate
Real time SEirree State Update-time
Measurements change lapsed

Every Second
Static Data- Dynamic Data-
Based Model Based Model

Every 5 Minutes

Initial conditions

(B

P
Discrete Event Atouepue
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Wellbore
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Temperature

Profile Estimation
- @/
\_ @terigger /

Figure 4: Schematic representation of the integrated framework, illustrating the dynamic assimilation of
real-time data into the forward-marching explicit numerical solution. (Adapted from Naderi et al.,
2024.)

Discrete Event Simulation (DES) stands as a computational modeling approach designed to
analyze and comprehend the intricate dynamics of complex systems. Unlike continuous
simulations, where changes unfold continuously over time, DES focuses on events that occur at
distinct points in time, capturing the discrete nature of operations and interactions within a system.
This is particularly relevant in well construction where rig state change and operational parameter
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changes constitute discrete events. For further details on DES in this context, please refer to Naderi
et al., 2024.

3.2 Utah FORGE Wellbore sections

This framework was applied to a simulation considering a coaxial well represented by concentric
cylinders in 3D with mud flowing through the drill string and rising to the surface through the
annular region between drill pipe and casing. The drill string components and casing program for
sections using BHA 9 and BHA 18 referencing wellbore 16A(78)-32 are detailed in Table 1. The
simulation encompasses a directional well trajectory, incorporating both vertical and horizontal
sections.

Table 1: Basic data of drill string and casing program for wellbore 16A(78)-32.

Parameter  Inner diameter (mm) Outer Diameter (mm) Depth (m)

Drill Pipe 110 127 Variable
First Casing 220 240 1062.5
Second Casing 320 340 116.4
Third Casing 480 510 39.3

In configuring the model for evaluation and calibration using the Utah FORGE dataset, the static
segment of the framework was defined from the surface down to the section corresponding to BHA
9 and 18 separately — the regions chosen for assimilation performance assessment. The raw data
were trimmed and processed to enhance data quality and provide distinct case of continuous
drilling operation for simplicity in model validation. Later, all operations in the respective BHA
sections were considered. The time windows considered for sections BHA 9 and BHA 18 are
clearly marked in Figure 5(a) and 6(a), respectively. As noted in the earlier sections, correct
estimation of the initial conditions, i.e., the static model is important in simulating the temperature
evolution through the dynamic model. This is reflected in the simulation results for BHA 9 and
BHA 18. It can be noted from Figure 5(a) that by manipulating the initial estimate of geothermal
gradient allowing for least error between the simulated and measured temperature profiles at the
simulation start, the temperature dynamics follows the measurements. However, this is not the
case when the input parameters are erratic as can be seen from Figure 5(b); although the initial
conditions were manipulated in order to track the temperature dynamics at the later stage, there
exists significant differences in the predicted and measured temperature in some regions. The
initial state calibration was carried out through trial-and-error approach in this study but can be
extended to an automatic calibration technique with ease. Similar observations can be noted for
simulations in section BHA 18 as reflected in the Figure 6.
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Figure 5. (a) A selection of timeseries data from BHA 9 section of well 16A(78)-32 in Utah FORGE dataset;
(b) Comparison of the time evolution of simulated and measured temperatures for a trimmed dataset
for the section; and (c) Comparison of the time evolution of simulated and measured temperatures for
full dataset for the section.
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Figure 6. (a) A selection of timeseries data from BHA 18 section of well 16A(78)-32 in Utah FORGE dataset;
(b) Comparison of the time evolution of simulated and measured temperatures for a trimmed dataset
for the section; and (¢c) Comparison of the time evolution of simulated and measured temperatures for
full dataset for the section.

4. Wellbore thermal management system

A hydrothermal simulator is an important tool for drilling geothermal wells offers important
insights into the temperature distribution along the wellbore. It can be noted in the considered cases
that the maximum temperature encountered in the wellbore are not always necessarily at the
bottom. This is shown in the Figure 7 for two sections: nearly vertical BHA 9 and deviated BHA
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18. The considered system generates the temperature profile along the wellbore depth at set time
intervals, say every 5 minutes and provides information on the maximum temperature and the
depth at which it is experienced. Given the computationally efficient model considered in this
study, circulation rate and timing can be iterated over a certain interval to manage the wellbore
temperature distribution accordingly. This information is crucial in cases like tripping in with
downhole tools wherein they experience temperatures higher than their operational limit before
they reach the bit is on-bottom. Thermal management becomes important to extend the operational
lifetime of such tools and in avoiding significant NPT/ ILT due to downhole tool failures.
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Figure 7. Time evolution (light to dark) of the temperature profile for the full dataset along the measured
depth of the well for sections BHA 9 and BHA 18 of Utah FORGE well. Green line represents the
temperature profile of mud inside drill string and brown the mud in annulus.

5. Conclusions

In this work, a computationally efficient hydrothermal model was developed to estimate the
temperature distribution along the wellbore. The model has been updated from the authors’
previous work to ensure numerical stability while handling real time data from the mud logging
unit. The sensitivity analysis shows that the initial estimate of the geothermal gradient is important
to follow the temperature dynamics of the system and that the gradient is not observable from the
surface temperature as a measurement alone. Thus, bottom hole temperature measurements are
necessary to calibrate the model through ML methods to accommodate the model uncertainties.
The DES triggers the model to simulate temperature profile on system changes and the maximum
temperature region is identified to inform on the mud circulation rate and time to allow for the
downhole tool operations.

To build an automated thermal management system, further analysis of the controllability and the
observability of the hydrothermal system is necessary. This shall pave way to designing an
efficient controller for real time recommendation of the circulation rate and the circulation time
for an optimized wellbore temperature profile.
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Nomenclature

Abbreviations

BHA
DES

Bottom Hole Assembly
Discrete Event Simulation

FEM  Finite Element Model

FDM  Finite Difference Method

ML Machine Learning

MPT  Mud Pulse Telemetry

NPT Non-Productive Time

PIML  Physics-Informed Machine

3D 3 Dimensional

1D 1 Dimensional

Variables

R Analogical thermal-electrical

h Convective heat transfer

D Density

Z Depth

d Diameter

f Friction resistance coefficient

AP Frictional resistance pressure

G Geothermal gradient

a Heat source term

Dy Hydraulic diameter

r Radius

Re Reynolds number

c Specific heat capacity

T Temperature

A Thermal conductivity

t Time

dt Timestep

Y Viscosity

Units

°C Degree Celsius

K Kelvin

kg Kilogram

m Meter

mm Millimeter

Pa Pascal

S Second
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