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ABSTRACT  

A more general advection-diffusion equation, which can describe the mass transport in both 
single- and two-phase fluid flow is proposed. A field distribution parameter was coupled in a 
modified governing differential equation, which can be used not only to account for the change 
of diffusivity in single-phase flow, but also to account for the sharp concentration jump at the 
interface of two-phase fluid flow. A unified multiple-relaxation-time (MRT) lattice Boltzmann 
equation (LBE) for simulating the advection-diffusion problems is also proposed. Two test cases 
with transient and steady conjugate mass transfer problems with straight or curved interfaces 
were calculated to validate the present method. The results show that the proposed MRT LBE is 
simple and accurate, and has good numerical stability against large difference in mass 
diffusivity. 

 

1. Introduction  
Advection-diffusion phenomena can be widely observed in nature and many industry 
applications, for examples, the spreading of contaminants in heterogeneous porous media 
(Masciopinto, 2018) (Amaziane, 2008), bioreactors (Dumont et al., 2006), proton exchange 
membrane (PEM) fuel cell (Molaeimanesh and Akbari, 2015), and geothermal modelling in 
fractures (Chiba, et al., 2008) etc. An accurate model for the mass transport by advection and 
diffusion is very important. The key feature of this problem is that the concentration may evolve 
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with a sharp jump distribution at the phase interface of two-phase flow. The diffusivities of one 
solute in different solvents are in general different. Even in a same solvent, the diffusivity may 
vary with temperature, such as the salty water, the salt concentration may vary with temperature 
even at a mass equilibrium state (Lemos, 2019).  

The mass transfer phenomenon in a homogeneous solvent is generally described by Fick's Law 
in a form of qm= -D∇C, the corresponding governing equation describing an advection-diffusion 
problem can be written as 
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where D is the mass diffusivity of a solute, C is the solute concentration, u is the velocity vector 
of fluid flow. It is noticed that while the solute in different solvents or in a solvent with a 
temperature (or some other parameters) dependent diffusivity, i.e. double diffusion problem, the 
numerical procedure for solving equation (1) will become difficult. The solute concentration at 
equilibrium state may have a jump from one phase (solvent) to the other phase (another solvent). 
As pointed out by Lu et al. (2019) that the governing equation of mass transfer in a single 
solvent, Eq. (1), cannot be extended to conjugate mass transfer directly, and Henry’s Law must 
be taken into account for modification. 

The unified scheme that simulates the entire concentration field in different solvents with a 
unified equation has been widely used to simulate conjugate mass transfer. Davidson and 
Rudman (2002) developed a volume of fluid (VOF) method for the conjugate heat and mass 
transfer. However, they did not consider the concentration jump between different phases. Onea 
et al. (2009) also proposed a method based on VOF and Henry’s law to simulate conjugate mass 
transfer by adding an additional source term to the governing equation. Yang and Mao (2005) 
simulated the conjugate mass transfer of a droplet moving in a continuous immiscible liquid with 
level set method. The concentration field is calculated by introducing a new scalar that 
corresponds to 2/1HeC L  in the liquid phase and 2/1/ HeC G  in the gas phase. The transformation 
can make the transformed concentration continuous at the interface. However, several 
parameters such as local velocity and diffusivity have to be transformed as well to satisfy the 
mass flux continuity at the interface. This leads to additional computation cost. 

 

2. A General Governing Equation for Advection-Diffusion Problems 
It is worthy to point out that the key problem of Fick’s law is taking concentration as the driving 
potential in conjugate mass transfer. Take a gas-liquid two-phase diffusion problem as an 
example, there is no mass flux across the interface, however, there exists a concentration 
difference determined by Henry’s law. While a diluted solution reaches a chemical equilibrium 
with the gas mixture, a dynamic mass balance for the solute exists at the gas-liquid interface 
even there is a concentration difference for the solute in different phases respectively. It certainly 
proves that it is unreasonable to take concentration as the driving potential in conjugate mass 
transfer. In fact, the diffusion velocities for the solute in different phases are different even the 
two phases are at chemical equilibrium.  In order to overcome the drawback of Fick’s law, a 
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modified advection-diffusion equation was proposed recently by Lu et al. (2019), which is 
written as follows, 
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The interface conditions of the governing equation for a two phase problem are 
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The parameter φ in Eqs. (2)-(4) is called the field distribution parameter. In a two phase 
advection-diffusion problem, it can be given by 
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where He is the Henry’s number, reflecting the chemical potential ratio of such a solute in the 
gas phase and liquid phase.  

The modified governing equation (2) can be certainly used for describing the advection-
diffusion problem in a single-phase, however, in this case the field parameter φ can be 
regarded as the ratio of local diffusivity to the reference diffusivity.     

 

3. Numerical Method 
As an alternative numerical method to solve the Navier-Stokes equation and advection-diffusion 
equation, the lattice Boltzmann method based on the Boltzmann equation in statistical mechanics 
has been developed rapidly in recent years. As proved by some previous researchers, LBM is an 
effective and very simple method in simulating multiphase liquid flow (Shan and Chen, 1992; 
Yan and Zu, 2007). A unified MRT LBE is proposed to simulate the advection-diffusion 
problem with a concentration jump at the interface. 

To achieve better numerical accuracy and stability, the MRT LBE with multiple relaxation times 
(Huang and Wu, 2015) was used in the simulation. The MRT LBE is given as 
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where gi is the discrete concentration distribution function, gi
eq is the equilibrium concentration 

distribution function, ∆x and ∆t are the unit space step and the time step, respectively. Here, 
D3Q7 model (three dimensional with seven discrete velocities) is adopted for simulation, the 
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discrete velocities ier  and the equilibrium energy distribution functions are given as Eqs. (4) and 
(5), respectively. 
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where uα is the velocity, w is the weight coefficient for directions i=1 to 6, within the range (0, 
1/6). The relaxation time τg and the constant w are related to the diffusivity coefficient as 
follows: 

( ) tcwD g ∆−= 25.02 τ                                       (9) 

where M is the matrix that projects a vector onto the moment space m , which can be expressed 
as (Li and Tong et al., 2017): 
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The corresponding equilibrium moment 
eqm is given as 
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eq −=                        (11) 

The relaxation matrix S , which is a diagonal matrix, can be expressed as 

[ ]6543210 ,,,,,, sssssssdiagS =                        (12) 

where c is the lattice speed defined as c = ∆x/∆t. In the lattice Boltzmann equation, the bulk 
concentration is obtained by 
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Among the relaxation parameters in the diagonal relaxation matrix, the values of 0s , 1s , 2s  and 

3s  are set as 10 =s  and gs τ13,2,1 = , respectively, and the rest relaxation parameters, which can 
be adjusted to achieve better performance in real application, are variable in a range of 

20 6,5,4 << s . In the present paper, a parameter one fourth is kept in the MRT collision scheme, 
which is defined as 
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By keeping the two parameters of 1s  and 4s  in such a relation, better numerical accuracy and 
stability can be achieved. And it has been proved by Li et al. (2017) that the parameter can 
significantly eliminate the numerical diffusion across the interface in a solid-liquid phase change 
problem with discontinuous heat flux across the interface. 

4. Numerical Validation 
To verify the proposed MRT LBE, a transient advection-diffusion problem between the liquid 
and gas with a moving interface was performed. At the initial time, the physical model is shown 
in Fig. 1.  

 

Figure 1: 1D conjugate mass transfer in an infinite system 

 

The entire area will move toward z axis with a constant velocity u =20DG/H when the time t > 
0. For the moving interface, the volume of fluid (VOF) method is used, and its position is 
implicitly captured by the fluid fraction F. The distributions of F at different time is given in 
advance as follows: 











+>

+≤≤−
+−

−

−<

=

20

22
2

1

21

m

mm
m

m

m

dutx

dutxdut
R

Rutx
dutx

F

                  (14) 

u 



Lei et al. 

where dm is width of the interface with a value of dm =∆x. The parameters including D and w can 
be determined by following equations, respectively. 
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The problem is solved by the proposed MRT LBE, and the dimensionless concentration 
distribution at four different transient periods including 0=Fo , 4104 −×=Fo , 3101 −×=Fo , 

3102 −×=Fo  are compared with the corresponding analytical solutions (Haroun, et al., 2010). 
The relaxation times in the liquid and gas are set as 0.516 and 0.54, respectively, while the mesh 
size is 100Hx =∆ . Figure 2 shows the comparisons between the MRT LBE results and the 
analytical solutions at different times. With the time step increasing, the concentration peak 
moves toward the velocity direction, and the concentration distribution near the peak varies 
sharply. It can also be seen that the MRT LBE results always show good agreement with the 
corresponding analytical solutions at different periods. It is noted that the concentration jump at 
the moving interface cannot be described precisely owing to using the diffusive interface to 
replace the real shape interface. The numerical error increases when the interface becomes wider. 
The numerical tests for trying different diffusive interface thickness dm  indicates that we should 
use thinner diffusive interface to decrease the numerical error. However, on the other hand, 
diffusive interface with enough width is needed to ensure the stability for simulating multiphase 
flow with lattice Boltzmann models. Therefore, choosing an approximate interface width is 
necessary for simulating conjugate mass transfer accompanying with multiphase flow.  
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Figure 2: Comparisons of C  between the MRT LBE results and the analytical solutions for transient mass 
transfer between the liquid and gas with a moving interface 
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5. Conclusion 
A more general governing equation for describing the advection-diffusion problem was 
proposed, and this equation can be numerical simulated by using MRT LBE. It is found that 
Henry’s Law, which relates to variable concentration distribution at the two sides of interface, 
can be expressed as a relation between two constant weight coefficients in LBE. The numerical 
test for a transient advection-diffusion problem between the liquid and gas with a moving 
interface shows that the MRT LBE has a better numerical stability than the SRT LBE against 
large distribution coefficients and diffusivity coefficient ratios.  
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