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ABSTRACT 

The Tuscarora Sandstone is a target for use as a geothermal reservoir for direct-use heating of the 
West Virginia University campus in Morgantown. Currently, the nearest wells drilled to the 
Tuscarora are located about 15 km from Morgantown, and the nearest well with permeability 
data is about 60 km from Morgantown. As a result, there are relatively large uncertainties in 
geologic properties and flow geometries for the Tuscarora below Morgantown, which is common 
in the exploration phase of geothermal projects. This paper presents a stochastic estimation of the 
geothermal reservoir productivity for the Tuscarora Sandstone that accounts for these 
uncertainties. Statistical analyses of available geologic datasets are used to characterize 
probability distributions for reservoir properties, including porosity, permeability, reservoir 
thickness and depth. A Monte Carlo analysis of these reservoir properties and fluid properties is 
used to estimate the Tuscarora reservoir flow productivity. Results are compared for fracture-
dominated and matrix flow productivity to estimate bounds of the favorability. A sensitivity 
analysis of flow productivity results explores the impact of uncertainties in engineering-
controlled variables and variables whose probability distributions are not well-characterized by 
the available data. Transforming the reservoir productivity predictions into favorability values 
allows for probabilistic interpretations of the Tuscarora achieving certain favorability thresholds. 
The methods presented in this paper may be applied before site-specific data are collected to 
inform project decision making and data collection. 

1. Introduction 
As part of an ongoing U.S. Department of Energy-funded study, the West Virginia University 
campus in Morgantown is being evaluated for the feasibility to utilize deep geothermal resources 
for direct-use heating of campus facilities (Garapati et al., 2019; McCleery et al., 2018). The 
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target formation for a geothermal reservoir is the Tuscarora Sandstone, which regionally has 
fracture-dominated permeability in hydrocarbon reservoirs (Avary, 1996). There are relatively 
large uncertainties in geologic properties and in the flow geometry of the Tuscarora below 
Morgantown. The uncertainties arise from 1) a lack of wells drilled to the depth of the Tuscarora 
within ~15 km of Morgantown, 2) from the long distance to the nearest well with permeability 
measurements (~60 km), and 3) from the limitation of permeability data to laboratory 
measurements on core, rather than borehole flow tests. Such uncertainties are common in the 
early phases of geothermal projects, and they are important to consider for probabilistic 
evaluations that inform project decisions (e.g. Witter et al., 2019). 

This paper presents a stochastic evaluation of geothermal reservoir favorability for the Tuscarora 
Sandstone below Morgantown using simple metrics that estimate unstimulated reservoir 
productivity. Reservoir productivity is generally defined as how well a reservoir produces fluid, 
which is water in this paper. The stochastic method involves estimating reservoir productivity 
using a Monte Carlo uncertainty analysis that considers local well log data (< 30 km from 
Morgantown) and regional core permeability data (~60 km from Morgantown). Reservoir 
productivity values are computed for metrics that describe both fracture-dominated and matrix 
flow as bounding scenarios for the Tuscarora below Morgantown. A sensitivity analysis is 
presented for engineering-controlled variables (e.g. well separation distance) and for variables 
whose probability distributions are not well-characterized by available data. The reservoir 
productivity results for Morgantown are presented in the context of the Appalachian Basin 
reservoir favorability analysis by Camp et al. (2018), which was completed as part of the U.S. 
DOE-funded Geothermal Play Fairway Analysis of the Appalachian Basin (Jordan et al., 2016). 
Transforming the reservoir productivity results into favorability allows for probabilistic 
interpretations of the Tuscarora achieving specific Camp et al. (2018) favorability thresholds 
(e.g. unfavorable, okay, favorable). 

2. Methods to Assess Geothermal Reservoir Productivity 
The methods described in Camp et al. (2018) are used to estimate geothermal reservoir 
productivity. Those methods and reservoir productivity metrics are summarized in this section, 
along with additional assumptions and modifications made for this analysis. Reservoir 
stimulation methods that aim to improve permeability (e.g. Lu, 2018) are not considered in this 
paper, to be consistent with the Camp et al. (2018) analysis. 

2.1 Reservoir Productivity Metrics 

The permeability of the Tuscarora Sandstone is expected to be fracture dominated (Avary, 1996). 
Of the reservoir productivity metrics in Camp et al. (2018), the reservoir flow capacity (RFC) is 
most appropriate for fracture-dominated permeability. The RFC is analogous to transmissivity, 
and considers the (average) permeability over the thickness of the reservoir. The reservoir may 
have several permeable zones over its thickness, and the RFC is indifferent to the cause of the 
permeability (e.g. matrix, fracture). Therefore, this metric does not distinguish between different 
fracture flow geometries, which for the same RFC value could reflect geometries ranging from 
1) a single high permeability zone that provides an undesirable short time to thermal 
breakthrough to 2) distributed fractures of relatively lower permeability that provide desirable 
heat sweep of the reservoir.  
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It is also possible that the Tuscarora below Morgantown provides essentially matrix flow. If 
matrix permeability were too low for economic extraction of thermal energy, fracture flow may 
be preferred. However, if matrix permeability were sufficient to meet heat transfer needs, then it 
may allow for greater heat sweep of a reservoir compared to fracture flow. The reservoir 
productivity index for water (RPIw) is the metric used for matrix flow, which assumes a 
homogeneous and isotropic porous medium with a single fluid (i.e. water) produced from two 
vertical wells (e.g. Craft and Hawkins, 1959; Dietz, 1965; Gringarten, 1978).  

Equation 1 and Equation 2 provide the RFC and the RPIw metrics, respectively 

RFC = kwH  [ mD m ] 
(1) 

RPIw =
2π kwH

µ ln � d
rwell

�
𝜌𝑤  � 

kg
Pa ∙ s � 

(2) 

where kw is the water permeability (mD for RFC, m2 for RPIw), H is the thickness of the 
reservoir (m), μ is the dynamic viscosity of water at the temperature of the reservoir (Pa - s), ρw 
is the density of water at the temperature and pressure of the reservoir (kg/m3), d is the distance 
between wells (m), and rwell is the inner radius of the well (m). A constant water density of 988 
kg/m3 is used to be consistent with the reservoir analysis presented in Camp et al. (2018). Further 
details about these metrics are provided in Camp et al. (2018). 

2.2 Klinkenberg Permeability Correction 

The RFC and RPIw metrics require the rock permeability for water. Permeability was measured 
using air in the dataset used in this paper (McDowell et al., 2018; Section 3.4, this paper), so a 
Klinkenberg correction is needed to convert the air permeability to an effective water 
permeability. The Klinkenberg correction used in this study is provided in Jones (1987) 
(regression developed for sandstones with permeability range 0.01 mD to 2000 mD). All air 
permeability measurements in this paper are greater than 0.01 mD. Some air permeability 
measurements are greater than 2000 mD, but applying the correction to such high permeabilities 
negligibly reduces their values. 

Equation 3 provides the general form of the Jones (1987) Klinkenberg correction for effective 
water permeability (kw), and Equation 4 provides the parameter specification for b 

kw =
kg

1 + b
p

 [mD] 

(3) 

b =

     

15.61�
kg
𝜙 �

−0.447

[psig], 0.01 mD < kg < 2000 𝑚𝐷 

(4) 

where kg is the gas (air) permeability (mD), ϕ is the rock decimal porosity, b is the “fractional 
increase in apparent permeability which would be observed when measuring kg [with air] at 
atmospheric pressure” (Jones and Owens, 1980) (psig), and p is the mean flowing gauge pressure 
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of the equipment used to measure kg (psig). In this study, p = 26 psig using a Core Labs PPP-250 
minipermeameter (McCleery et al., 2018). 

The Tuscarora rock porosity is estimated from core samples in this study, as presented in Section 
3.3. The average porosity is assigned to all values of permeability because sufficient porosity and 
permeability measurements in the same core sample locations are not available to develop a 
porosity-permeability regression relationship (e.g. Ehrenberg and Nadeau, 2005). For the 
smallest kg measured in this dataset, 0.4 mD, using porosity values of 0.5% or 15% instead of the 
average value of 3% affects the correction to kw by less than a factor of 1.2. The factor is smaller 
for larger values of permeability. Assuming average porosity for all kg will not greatly impact the 
resulting kw values. 

2.3 Well Specifications for the RPIw Metric 

The RPIw requires a well separation distance and a wellbore radius. Based on thermal-hydraulic 
modeling (Garapati et al., 2019), the optimal distance between injection and production wells is 
expected to be between 400 m and 1000 m for various scenarios evaluated for the West Virginia 
University campus (N. Garapati, personal communication). For consistency with Camp et al. 
(2018), a distance of 1000 m is assumed. The sensitivity of the RPIw results to well separation 
distance is evaluated using separations from 400 m to 1000 m in increments of 200 m. 

The assumed inner radius of the wellbore at production depth is 0.1 m (3.93”), which is the same 
value used in Camp et al. (2018). The corresponding inner diameter is between the 6.2” and 8.5” 
values assigned to “small diameter” and “large diameter” geothermal wells in a GeoVision study 
by Lowry et al. (2017). 

2.4 Uncertainty Analysis for RFC and RPIw 

To provide estimates of uncertainty in the RPIw and RFC productivity metrics, Monte Carlo 
analyses of the reservoir properties and fluid properties within Equation 1 and Equation 2 are 
implemented, as described within Camp et al. (2018). That study provides tables of uncertainty 
levels for variables in Equations 1 and 2. The variables considered are the reservoir thickness, 
reservoir permeability, and fluid viscosity. Selection of values for the mean, uncertainty level, 
and probability distribution for each of these properties are described in Section 3. Some 
probability distributions are not well-characterized from the available data, so sensitivity analysis 
is applied to the parameters of those distributions to evaluate the impact on the resulting 
reservoir favorability. 

3. Estimation of Tuscarora Reservoir Properties 
The following subsections present a detailed discussion of a data-driven selection of values and 
probability distributions for Tuscarora reservoir properties that were used in the Monte Carlo 
computations of reservoir productivity metrics. Reservoir properties include 1) spatial area, 2) 
depth and thickness, 3) porosity, 4) permeability, and 5) viscosity at depth based on estimated 
temperatures at depth. Permeability is estimated for fracture-dominated and matrix flow 
geometries. A summary of the values and probability distributions selected for the Monte Carlo 
analysis is provided in Table 2 in Section 4. 
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3.1 Estimated Areal Extent of the Tuscarora for Production near Morgantown, WV 

The areal extent of the Tuscarora was estimated based on reasonable pumping distances from the 
production well to users in Morgantown. A 5 km pumping distance was assumed as a maximum 
distance in the Jordan et al. (2016) geothermal direct-use utilization analysis, and was also 
adopted in this paper. The Tuscarora permeability is thought to be structurally controlled (Avary, 
1996), so structural features may also limit the extent of the Tuscarora within which the geologic 
properties are similar. A fault southeast of Morgantown that is visible on the surface is of 
concern because those rocks could be more fractured than the rocks near Morgantown. The 
extent of the Tuscarora for Morgantown was clipped to be north and west of this fault, as shown 
in Figure 1. Further extension or reduction of the Tuscarora areal extent may be made after more 
detailed local analyses are completed. 

 

Figure 1: Estimated areal extent (yellow) of the Tuscarora Sandstone as a geothermal reservoir near 
Morgantown, WV. The yellow outline provides a 5 km buffer around Morgantown, as defined in the 
2010 Census Incorporated Places (West Virginia GIS Technical Centers, 2010). The buffer is limited on 
the eastern side because of a fault (magenta). 

 

3.2 Tuscarora Depth and Thickness 

Regional geological information leads to the expectation that there is little variation in the depth 
and thickness of the Tuscarora within the areal extent provided in Figure 1. Based on an analysis 
of 5 wells within 15 km of Morgantown by McCleery et al. (2018), the thickness of the 
Tuscarora near Morgantown is expected to be on average 400 ft (122 m), with a true vertical 
depth of about 10,030 ft (3058 m) below ground surface. It is unclear if this entire thickness 
would be productive as a geothermal reservoir. Permeability measurements provided in Section 
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3.4 indicate a possibility that the deepest third of the reservoir has lower permeability than the 
shallower two thirds. As a result, in this paper sensitivity of the reservoir productivity results to 
the mean reservoir thickness is presented using a 122 m average thickness and an 83 m average 
thickness. 

The uncertainty level (Camp et al., 2018) assigned to the Tuscarora thickness in this paper is 1, 
which states that ±20% of the mean thickness defines the lower and upper bounds of a symmetric 
triangular distribution. For a 122 m mean reservoir thickness, the bounds are [97 m, 147 m], and 
for the 83 m mean thickness the bounds are [66 m, 100 m]. The Tuscarora thicknesses observed 
in three local wells with complete Tuscarora thicknesses information are within one or both of 
these intervals. The Tuscarora permeability in these locations is unknown. 

In Camp et al. (2018), the reservoir depth was fixed at the average oil or gas production depth. 
For consistency with that analysis, the depth of the Morgantown Tuscarora was assigned a fixed 
value of 3 km. Even a relatively large uncertainty of ±100 m depth would result in only ~±3% 
change in reservoir productivity. 

3.3 Tuscarora Porosity for the Klinkenberg Correction 

McDowell (2018) collected visual porosity estimates using blue stain on 29 rock thin sections 
spanning 19 m (62.3 ft) of the Tuscarora Sandstone from core from the Clay 513 well (API: 
4701500513; Figure 1) in Clay County, WV (Table 1). This well is in a similar structural setting 
as Morgantown (McCleery et al., 2018). Porosity was estimated by comparison of thin section 
view(s) at the lowest available magnification (1x objective – 10x eyepiece), based on charts in 
Terry and Chilingar (1955) (R. McDowell, personal communication). A variety of features 
induce localized porosity contrasts, including stylolites, burrows, and fractures. This small 
sample of Tuscarora porosity is likely insufficient to fully characterize the distribution of 
porosity for Tuscarora reservoirs; however, this dataset (Table 1) is the largest available with 
which to estimate an average porosity. 

Table 1: Number of McDowell (2018) samples within visual porosity classes (Terry and Chilingar, 1955) for 
the Tuscarora sandstone in the Clay 513 well. Four samples had zonal porosity features (e.g. matrix vs. 
stylolite) and have one count per feature.  

Number of Samples Visual Porosity (%) 
17 ≤1 
5 1 to 2 
4 2 to 5 
5 5 to 10 
1 10 to 15 
1 15 to 25 

 

Based on Table 1, the most likely value of porosity for the Tuscarora for this well is ≤ 1%. Zones 
of porosity > 10% result from burrows and from coarse or very coarse local grain size 
distributions. Fractures seem to have less impact on porosity than do burrows and grain size for 
this well. The minimum and maximum visual porosity estimates for core sample depths are 
provided in Figure 2. The porosity varies by as much as 10% within a 5 ft (~1.5 m) interval. The 
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average low porosity is about 1.3%, the average high porosity is about 4.7%, and the overall 
average is about 3%. 3% porosity is assumed in the Klinkenberg permeability correction. 

 

Figure 2: Low (blue) and high (red) visual porosity estimates for rock thin sections from core from the Clay 
513 well (McDowell, 2018). Lines connecting sample points are for visual reference, and should not be 
used to infer geologic trends with depth. 

 

3.4 Tuscarora Permeability 

McDowell, Lewis, and Daft (2018) collected air permeability measurements in 753 unique 
locations on 279 different core samples spanning a 273 ft (83 m) thickness of the Tuscarora in 
the Preston 119 well (API: 4707700119; Figure 1) in Preston County, WV. Three measurements 
were taken in each location to estimate measurement errors resulting from the data collection 
method. Generally, measurement errors increase in magnitude for higher permeabilities, and 
errors do not seem to be significant relative to variability in permeability along the length of the 
core. For this analysis, the average of the three measurements is used, after converting to 
effective water permeability using Equations 3 and 4. Measurements taken on fractures listed as 
horizontal or subhorizontal with dip angles less than 20° were excluded from this analysis 
because these fractures are likely to be closed at the in situ depths of the Tuscarora. 

Figure 3 provides the effective water permeability as a function of depth for this well. Permeable 
zones greater than 1 Darcy are found throughout the Tuscarora thickness. Filled fractures tend to 
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have smaller permeability than unfilled fractures. Shallower depths within this well seem to have 
more frequent permeable zones than deeper depths. 

 

Figure 3: Tuscarora effective water permeability (mD) based on core samples from the Preston 119 well in 
Preston County, WV. Measurements on horizontal and subhorizontal fractures with dip angles less 
than 20° are not plotted. Lines connecting points are for visual aid and should not be used to infer 
geologic trends in permeability with depth. 

 

Permeability measurements were taken on several structural features that are known to affect 
permeability. The role of the type of features can be expressed with an effective water 
permeability histogram (Garapati et al., 2019; Figure 4). Permeabilities less than 10 mD are 
found primarily in matrix rock. The following features were grouped into a Matrix Rock 
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category to calculate the permeability in the RPIw metric: matrix, matrix with stylolites, coarse 
grain with and without stylolites or voids, granular, and burrow. Matrix Rock permeability was 
measured on every core sample, so the resulting permeability distribution should be 
representative of the population Tuscarora Matrix Rock permeability over this depth range. For 
fracture permeability, the distribution in Figure 4 should be considered as an upper bound 
estimate for Morgantown because the Preston 119 well is located about 0.7 miles from the crest 
of the Eglon Anticline (Hennen et al., 1914), whereas Morgantown is not in a similar structural 
position. Based on observations from the core (R. McDowell, personal communication), this 
limb of the anticline seems highly fractured. 

 

 

 

Figure 4: Stacked barplot showing the contribution to the water permeability by the type of structural 
feature. The aggregate distribution is the effective water permeability histogram for the samples 
collected. Measurements on horizontal and subhorizontal fractures with dip angles less than 20° are 
not plotted. 
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3.4.1 Matrix-dominated permeability 

The observed Matrix Rock permeabilities have a real-space mean of 2.79 mD and real space 
standard deviation of 1.76 mD (coefficient of variation [CV] = 63%). The histogram of observed 
Matrix Rock water permeability (Figure 5) does not resemble an analytic distribution. The 
lognormal distribution is commonly used to model permeability, and it was also used in Camp et 
al. (2018), so it is selected for this analysis. Based on the Matrix Rock permeability data, the 
uncertainty level was assigned as 3, which corresponds to a lognormal distribution coefficient of 
variation (CV) of 50%. The resulting lognormal distribution fit to the data is displayed in Figure 
5. Using the next largest uncertainty level of 4 (CV = 100%) results in the tails of the distribution 
being thicker in density than were observed. 

 

 

Figure 5: Lognormal distribution fit to Matrix Rock effective water permeability using the method of 
moments (MOM) (black) and fit assuming an uncertainty level of 3 or 4, corresponding to a CV of 50% 
(red) or 100% (green). 
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3.4.2 Fracture-dominated permeability 

For the Reservoir Flow Capacity (RFC) metric, the entire distribution shown in Figure 4 was 
used to estimate parameters for an analytic probability distribution to describe permeability. 
Every structural feature on these cores was sampled (R. McDowell, 2018, personal 
communication), so it is assumed that the dataset is representative of the population distribution 
that describes Tuscarora permeability.  

The RFC metric assumes a mean water permeability for the reservoir. The RFC is a simplified 
transmissivity calculation, so the appropriate mean permeability to use depends on the reservoir 
flow geometry. Because the flow geometry is unknown for the Preston-119 Tuscarora and for the 
Morgantown Tuscarora, this analysis evaluates each of three mean permeabilities: the arithmetic 
mean, geometric mean, and harmonic mean. These means provide estimates of a representative 
homogeneous reservoir permeability for a reservoir that is expected to be heterogeneous with the 
flow geometries described below. These values are not expected to perfectly represent the actual 
flow geometry in the Morgantown Tuscarora, although they provide bounds on the actual 
productivity. 

The arithmetic mean considers that most of the flow will be from high permeability zones, even 
though they have relatively low probability density (Figure 4). The representative flow geometry 
is laterally extensive parallel fractures (e.g. Warren and Price, 1961). The geometric mean has 
been shown to reproduce the large-scale effective permeability of some reservoirs (e.g. Jensen, 
1991). The harmonic mean is representative of fractures connected in series. For this study, the 
harmonic mean fracture-dominated permeability is similar to the average Matrix Rock 
permeability (Figure 5). Results are provided for Matrix Rock RFC, so the harmonic mean is not 
analyzed. Results are compared for the RFC for the geometric mean and arithmetic mean 
fracture-dominated permeabilities. 

Assuming that the Preston-119 Tuscarora is representative of the Morgantown Tuscarora, a 
bootstrapping approach is appropriate to estimate the distribution of the mean effective water 
permeability. The 1D vertical autocorrelation of the effective water permeability was estimated 
using a variogram to inform whether or not block bootstrapping methods would be necessary to 
capture vertical autocorrelation in permeability (e.g. Solow, 1985). Average vertical 
autocorrelation did not change significantly for sample separation distances ranging from 5 ft to 
100 ft (1.5 m – 30.5 m), so block bootstrapping was not used. 

For the bootstrapping experiment, 100,000 random samples of size 505 were used, selected with 
replacement from the original sample of 505 measurements. The mean (geometric and 
arithmetic) of each 505-element sample was computed as an estimate of the mean effective water 
permeability for Tuscarora reservoirs. The resulting distribution of the mean effective water 
permeability is provided as a histogram in Figure 6. The bootstrapped real-space arithmetic mean 
of the effective water permeability is 157 mD, with a standard deviation of 33 mD (CV = 21%). 
The bootstrapped real-space geometric mean of the effective water permeability is 5.2 mD, with 
a standard deviation of 0.44 mD (CV = 9%). 

A lognormal distribution fit to the bootstrapped permeability data using the Method of Moments 
(MOM) is provided in Figure 6, along with lognormal distributions corresponding to uncertainty 
levels of 1 and 2 for CVs of 12.5% and 25%, respectively. Neither of the uncertainty levels 
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provide great fits to these bootstrapped distributions. To provide a wider range of possible values 
for the mean reservoir permeability, the CV of 25% is selected for the arithmetic mean, and a CV 
of 12.5% is selected for the geometric mean. The sensitivity of RFC results to the choice of CV 
is evaluated in Section 4.4. 

 

 

Figure 6: Lognormal distributions fit to histograms of bootstrapped random samples of the arithmetic (left) 
and geometric (right) mean effective water permeability. Distributions are provided using the method 
of moments (MOM) (black), and uncertainty levels of 1 (CV = 12.5%) (green) and 2 (CV = 25%) (red). 

 

3.5 Fluid Viscosity at the Tuscarora Depth 

For this analysis, pure water is assumed to be consistent with analyses presented in Camp et al. 
(2018). At the temperatures estimated at the depth of the Tuscarora below Morgantown, the 
viscosity of water is primarily a function of temperature.  

Temperatures at depth were estimated by Smith (2019, Ch.3) as follows: 1) the surface heat flow 
mean and uncertainty maps from Jordan et al. (2016) were used to gather values for 
Morgantown, 2) a Monte Carlo analysis of geologic properties (thermal conductivity, heat 
generation, formation thicknesses and depths) and surface heat flow was used in a 1-D heat 
conduction model (Smith and Horowitz, 2017) to estimate temperatures at depth. Figure 7 
provides violin plots (kernel density plots, also known as smoothed histograms, with boxplots in 
the center) of the temperatures at depth in 0.5 km intervals based on 10,000 Monte Carlo 
replicates. The top of the Morgantown Tuscarora is expected to be approximately 3 km depth, 
which corresponds to a mean of 88 °C and 5% and 95% estimates of [72.5, 104] °C. 
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Figure 7: Estimated temperatures at depth below Morgantown, WV in 0.5 km depth increments. Violin plots 
(smoothed histograms) have white dots at the median temperature, and a black box in the center that 
spans the 25th to the 75th percentile estimates from the Monte Carlo analysis described in Section 3.5. 

 

The temperatures as a function of depth are used to estimate the viscosity as a function of depth 
using the equation provided in the GEOPHIRES software (Beckers and McCabe, 2018) 
(Equation 5) 

µ =  2.414E−5 ∗ 10�
247.8

T+273.15−140� 
(5) 

where T is the water temperature (°C) and µ is the dynamic viscosity (Pa - s). The corresponding 
distribution of viscosity at depth is provided in Figure 8. The change in viscosity with increasing 
temperature is progressively smaller, so the uncertainty in viscosity decreases with increasing 
depth, despite increasing uncertainty in the temperature with increasing depth. The mean of the 
dynamic viscosity at the Tuscarora depth of 3 km depth is 3.22x10-4 Pa-s and the standard 
deviation is 3.35x10-5 Pa-s. This standard deviation maps to an uncertainty level of 4 for a 
normal distribution, which states that 2 standard deviations from the mean corresponds to values 
that are ±20% of the mean. 
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Figure 8: Dynamic viscosity of pure water as a function of depth below Morgantown, estimated using Figure 
7 temperature estimates in Equation 5. 

4. Monte Carlo Analysis Results for RPIw and RFC 
A Monte Carlo analysis using 100,000 replicates was used to estimate the RFC and RPIw for the 
Tuscarora Sandstone below Morgantown. Table 2 provides a summary of the values and 
probability distributions selected for each variable. Water permeability for Matrix Rock (Figure 
5) is used to compute the RPIw metric, and water permeability for fracture-dominated flow 
(Figure 6) is used to compute the RFC metric. 

4.1 Matrix-Dominated Reservoir Productivity 

The distribution of Monte Carlo replicates for the RPIw is provided in Figure 9, colored by the 
Camp et al. (2018) favorability scale. About 11% of the RPIw estimates are in the “Favorable” 
range, and the rest are in the “Okay” range. Using instead the RFC with Matrix Rock 
permeability rates the Tuscarora as “Favorable” (Figure 10). Only 1% of the replicates are 
“Okay”, and about 0.6% of the replicates are “Very Favorable.” Thus, using the favorability 
thresholds and well separation distance of Camp et al. (2018), for the same dataset there is a 
difference in favorability using these reservoir productivity metrics. Overall, considering a 
matrix-dominated flow scenario, the Tuscarora below Morgantown is estimated to have 
favorable or okay productivity, on average, and there is a small chance that productivity will be 
very favorable. 
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Table 2: Values and probability distributions selected for the Monte Carlo analyses of the RFC and RPIw 
metrics. Uncertainty levels are from Camp et al. (2018). 

Variable Distribution Mean Uncertainty Level 
Water 
Permeability 

Lognormal Matrix Rock: 2.79 mD 
 

Fracture-Dominated 
Arithmetic Mean: 157 mD 
Geometric Mean: 5.2 mD 

3: real-space CV = 50% 
 
 

2: real-space CV = 25% 
1: real-space CV = 12.5% 

Reservoir 
Thickness 

Triangular Scenarios:  
122 m or 83 m 

1: Lower and upper bounds 
are ± 20% of the mean 

Water 
Dynamic 
Viscosity 

Normal 3.22x10-4 Pa-s 4: mean ± 2 standard 
deviation values are ± 20% of 

the mean 
Water Density Constant 988 kg/m3 NA 
Well Inner 
Radius 

Constant 0.1 m NA 

Well 
Separation 
Distance 

Constant Scenarios:  
400, 600, 800, and 1000 m 

NA 

Reservoir 
Depth 

Constant 3000 m NA 

Reservoir 
Porosity 

Constant 3% NA 

 

 

 

Figure 9: Reservoir Productivity Index for water (RPIw) for Matrix Rock permeability based on 100,000 
Monte Carlo replicates. The distribution is colored by the Camp et al. (2018) favorability scale for flow 
through reservoirs: 3: 0.1 kg/MPA-s – 1 kg/MPA-s, 4: 1 kg/MPA-s – 10 kg/MPA-s. 
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Figure 10: Reservoir flow capacity (RFC) for Matrix Rock permeability based on 100,000 Monte Carlo 
replicates. The distribution is colored by the Camp et al. (2018) favorability scale for flow through 
reservoirs: 3: 10 mD-m – 100 mD-m, 4: 100 mD-m – 1000 mD-m, 5: >1000 mD-m. 

 

 

Figure 11: Reservoir flow capacity (RFC) for fracture-dominated Tuscarora based on 100,000 Monte Carlo 
replicates (left: geometric mean effective water permeability, right: arithmetic mean). The distributions 
are colored by the Camp et al. (2018) favorability scale. Values >1000 mD-m are in the “Very 
Favorable” category. 
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4.2 Fracture-Dominated Reservoir Productivity 

Figure 11 provides the distributions of Monte Carlo replicates for the fracture-dominated RFC 
using the bootstrapped arithmetic and geometric mean effective water permeability. For the 
arithmetic mean, all replicates are in the “Very Favorable” range. For the geometric mean, nearly 
all replicates are in the “Favorable” range. Therefore, if the Tuscarora reservoir below 
Morgantown has fracture-dominated permeability similar to the Preston-119 permeability 
distribution (Figure 5), the reservoir productivity is expected to at least be favorable. 

4.3 Sensitivity of the RPIw Metric to Well Separation Distance and Reservoir Thickness 

The effect of well separation and reservoir thickness on the RPIw metric for Matrix Rock is 
provided in Figure 12, which shows empirical cumulative distribution functions (CDFs) of the 
RPIw Monte Carlo replicates. Although the trend is expected, that a thinner reservoir provides a 
smaller RPIw, and shorter well spacing provides a larger RPIw (Equation 2), the impact of well 
spacing on favorability is small for the values used in this analysis. For a 122 m thick reservoir, 
the percentage of replicates above a “Favorable” 1 kg/MPa-s is about 11% for 1000 m spacing, 
and about 17% for 400 m well spacing. The impact of mean reservoir thickness is of greater 
importance than the well spacing for the values selected. For a 1000 m well spacing, the 
percentage of replicates above 1 kg/MPa-s is about 11% for a 122 m mean reservoir thickness, 
and about 1% for an 83 m mean reservoir thickness. 

 

Figure 12: Empirical CDFs of computed RPIw values for Matrix Rock using the specified mean reservoir 
thicknesses and well spacings in Monte Carlo analyses. Relevant favorability thresholds are shown as 
vertical lines. From left to right, they represent: start of “Unfavorable” region (orange), start of 
“Okay” region (yellow), and start of “Favorable” region (light green). 
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4.4 Sensitivity of the RFC Metric to Reservoir Thickness and Permeability Uncertainty Level 

Figure 13 provides CDFs of the RFC metric for fracture-dominated Tuscarora as a function of 
the permeability uncertainty level and mean reservoir thickness specified in the Monte Carlo 
analyses. Considering only the impact on productivity favorability, for the arithmetic mean it 
does not matter which reservoir thickness or permeability uncertainty is selected because all of 
the Monte Carlo replicates are in the “very favorable” region. For the geometric mean, nearly all 
results are in the favorable region, with a small chance of being in the very favorable region for a 
122 m thick reservoir. 

 

 

Figure 13: Empirical CDFs of computed RFC values using the specified mean reservoir thicknesses and 
permeability uncertainties in Monte Carlo analyses. Favorability thresholds are shown as vertical lines. 
From left to right, they represent: start of “Okay” region (yellow), start of “Favorable” region (light 
green), and start of “Very Favorable” region (dark green). 

 

5. Appalachian Basin Reservoir Favorability and Uncertainty Maps 
For matrix-dominated Tuscarora permeability, the RPIw reservoir favorability is “Okay” on 
average, and might be “Favorable” using the Camp et al. (2018) favorability scale (Figure 9). 
Figure 14 provides the mean RPIw favorability map and uncertainty map for the Appalachian 
Basin. The uncertainty is the coefficient of variation (CV) for the real-space data. A matrix-
dominated Morgantown Tuscarora is estimated to be among the more favorably productive 
reservoirs in the basin, even for this relatively low permeability scenario. 
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Figure 14: Map of the mean (left) and CV (right) for the RPIw for reservoirs in Camp et al. (2018), and the 
Morgantown Tuscarora. Reservoirs are colored by their favorability. More favorable reservoirs are 
plotted on top of less favorable reservoirs where they overlap in space. Locations without reservoirs in 
the Camp et al. (2018) database are shown as white. 

 

For fracture-dominated Tuscarora permeability, the RFC reservoir productivity is “Very 
Favorable” with no uncertainty in the favorability value for the arithmetic mean permeability, 
and is “Favorable” for the geometric mean permeability (Figure 11). If a fracture-dominated 
Morgantown Tuscarora reservoir has permeability similar to the Preston 119 Tuscarora, it is 
estimated to be one of few favorable to very favorable reservoirs with low uncertainty in the 
Appalachian Basin (Figure 15). 

6. Discussion and Conclusions 
This paper presented a stochastic evaluation of geothermal reservoir productivity for the 
Tuscarora Sandstone below Morgantown, WV. Statistical analyses of available local and 
regional datasets were used to characterize probability distributions of reservoir and fluid 
properties. A Monte Carlo uncertainty analysis of these property values allowed for probabilistic 
interpretations of the Tuscarora reservoir meeting flow productivity favorability thresholds. For 
the Morgantown Tuscarora with these datasets, the minimum flow favorability resulting from 
matrix-dominated permeability is expected to be “okay”, with a small chance to be “favorable” 
according to the Camp et al. (2018) flow productivity favorability scale. The maximum flow 
favorability resulting from fracture-dominated permeability is expected to be “favorable” to 
“very favorable,” depending on the fracture flow geometry. In terms of the flow productivity 
favorability used in this study, a fracture-dominated Morgantown Tuscarora would be among the 
most favorable and least uncertain reservoirs to develop of those identified in the Appalachian 
Basin by Camp et al. (2018). The analysis in this paper considers only favorability in flow, not in 
heat extraction. Future work could address the heat extraction favorability of the Tuscarora 
reservoir using the results of the statistical analyses presented in this paper. 
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Figure 15: Map of the mean RFC for reservoirs in Camp et al. (2018), and the Morgantown Tuscarora with 
arithmetic mean (top left) and geometric mean (top right) fracture-dominated permeability. Only the 
Morgantown Tuscarora differs in the top two maps. Reservoirs are colored by their favorability, and 
more favorable reservoirs are plotted on top of less favorable reservoirs where they overlap in space. 
The CV is provided in the bottom map. The CV values for the Morgantown Tuscarora are within the 
same color range using either the arithmetic mean or geometric mean, so only one map is provided. 

 

Using a sensitivity analysis for well spacing and for variables whose probability distributions are 
not well-characterized by the available data was useful to examine the impact of such epistemic 
uncertainties on Tuscarora reservoir favorability. For this dataset, considering only the impact on 
flow favorability, well spacing uncertainty had a smaller impact on matrix productivity than the 
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uncertainty in the mean reservoir thickness. Uncertainty in the probability distribution 
parameters for permeability had a small impact on fracture-dominated favorability. Based on 
these results, future research and data collection efforts for Morgantown could target the largest 
uncertainty of whether or not Tuscarora flow productivity is fracture or matrix dominated. 

This study relied on simple metrics to estimate reservoir productivity. Using the statistical 
methods presented in this paper and in Camp et al. (2018), these metrics can be computed before 
site-specific data are available to characterize the reservoir flow geometry to allow for 
probabilistic interpretations of a reservoir meeting certain favorability targets. The uncertainty 
and sensitivity analyses presented in this paper are cheap to complete relative to the expense of 
drilling a geothermal well in a site of interest. These stochastic analyses can inform economic 
decisions for proceeding into further phases of geothermal projects. 
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