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ABSTRACT 

Multivariate statistical modeling, when properly applied, can be an effective tool for 
characterizing geothermal resources. One multivariate method used to reduce the dimensions of 
data sets while still describing the variability is Principal Component Analysis (PCA). As part of 
a larger study on multivariate statistical methods for characterizing geothermal fluids, PCA was 
performed on a dataset of thermal waters from Yellowstone National Park. To highlight the 
positive impact of PCA as a precursor to other multivariate statistical analyses such as regression 
and cluster analysis, the results of cluster analysis with and without PCA are compared.  

 

1. Introduction 
In the past several years, the geothermal research community has seen a surge in statistical 
modeling for resource exploration, characterization, and monitoring (e.g. Fairley and Anderson, 
2008; Trainor-Guitton et al., 2014; Schoenball et al., 2015; Lindsey et al., 2017; and Golla, 
2018). Projects such as the recent Play Fairway analysis (e.g. Coolbaugh et al., 2015; Forson et 
al., 2015; and Faulds et al., 2017) have further established the value of statistics, spatial statistics, 
and geostatistics in geothermal investigations. While multivariate statistics has been a part of this 
evolution, there has been no presented collection of multivariate statistical uses specific to 
geothermal datasets. In 2018, we began such a methods compilation primarily using geochemical 
datasets.  

Principal Component Analysis (PCA) was performed on a geochemical dataset from 
Yellowstone National Park (McCleskey et al., 2014) to visualize and interpret aqueous analysis 
of hydrothermal fluids. The results were presented at the Geothermal Resources Council Annual 
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Meeting 2018 (Golla, 2018). Here, we review the impact of this PCA analysis on further 
statistical processing of the dataset, which includes 41 variables of 100 springs, and by 
performing cluster analysis on both a reduced data set and an unreduced, original dataset.  

 

2. Methods 

2.1 Principal Component Analysis 

PCA is a multivariate statistical method that summarizes or reduces datasets by maximizing the 
variance of linear combinations of variables. Often, the results of PCA are inputs for further 
analysis such as linear regression or in the case we present here, cluster analysis (Rencher and 
Christensen, 2012; Lindsey et al., 2017). For the complete results of PCA on the Yellowstone 
dataset and a thorough review of the method, the reader is encouraged to review Golla (2018) in 
its entirety. Here, we will discuss the results of that analysis and compare them to a cluster 
analysis of the unreduced dataset to validate the importance of PCA before cluster analysis.  

2.2 Cluster Analysis 

Cluster analysis is a multivariate statistical tool used to separate data into groups or categories. 
Here, two methods of clustering are applied to the data. First, we apply hierarchical clustering 
which results in a dendrogram. It is often beneficial to perform hierarchical clustering first as the 
dendrogram provides some visual clues into the natural clustering of the system. Hierarchal 
clustering does not require the analyst to provide a number of clusters (k); the cluster value is 
determined by the analysis itself. In this manner, it is possible to constrain the value of k which is 
required input for subsequent k-means clustering.  

Before either method can be applied, the data must first be normalized. We accomplished this 
using z-score normalization: 

 

 𝑧 =
𝑥 − �̅�
𝑠𝑥

, 

 

Equation (1) 

 

 

where x is the realization of the variable, �̅� is the sample mean, and 𝑠𝑥 is the sample standard 
deviation. While some debate continues around the best method for normalizing data for cluster 
analysis, we use the z-score normalization here. According to Mohamad and Usman (2013) z-
score normalization provides optimal results when compared to non-normalization, min-max 
normalization, or other methods. 

2.21 Hierarchical Cluster Analysis  

For hierarchical clustering, several methods exist. In this analysis, we used complete linkage, or 
farthest neighbor, clustering which uses the maximum distance between two points to begin 



Lindsey and Golla 
 

clustering. Initially, each point is a cluster. At each step, points with maximum separation 
distance are combined, and new clusters are formed. If the new clustering reduces the within 
group sum of squares the change is accepted; if not, the change is reversed. The clustering that 
reduces the within group sum of squares and maximizes the between group sum of squares is 
chosen. This process repeats until optimum clusters are achieved. Optimum clustering is often 
defined as a change in sum of squares less than a predefined percentage.  

2.22 K-means Cluster Analysis 

K-means clustering is an iterative process that also seeks to reduce the within group sum of 
squares. One primary difference between k-means clustering and hierarchical clustering is that k-
means clustering requires the user to define the number of clusters. As previously mentioned, 
this input value is often chosen based upon the hierarchical clustering results. Several k values 
were tested. Afterwards, the sum of squares was reviewed to determine the optimum number of 
clusters. Scree plots are produced to show the change in sum of squares. For our purposes, we 
chose a cutoff of a change of less than 10% to choose our number of clusters.  

3. Results 

3.1 Principal Component Analysis 

A preliminary PCA resulted in a reduction of four dimensions, specifically calcium and 
magnesium, which are conventionally paired to quantify total hardness of a water sample, as well 
as sodium and potassium, which are known to exchange for each other between alkali feldspars 
in high-temperature geothermal systems. This suggests that the variability explained by calcium 
could also be explained by observing magnesium and the same for sodium and potassium. It is 
possible that further reductions of the data are possible, but currently we are testing this initial 
reduction. Reanalysis was not completed for this stage of the process and a complete description 
of the method and results can be found in Golla (2018).  

3.2 Cluster Analysis 

3.21 Cluster Analysis without PCA 

The results from the hierarchical clustering for the original dataset with no reduction can be seen 
in Figure 1. There appears to be one outlier spring, 13WA146. It’s possible that this sample is 
anomalous because it does not fit into a trend observed throughout the dataset. Generally, the 
saline signatures ((≥3000 μS/cm) belong to most of the hotter waters (~68-89 oC). Despite 
having the highest specific conductance (13766 μS/cm), sample 13 WA146 only discharges at 61 
oC. The other springs seem to fall into three clusters. One cluster is very small with only two 
springs and plots closely to 13WA146. The other two primary clusters are similar in size.  

Based upon the results of the hierarchical clustering, a k value of three was chosen for the k-
means analysis, which is represented on a Cl-SO4-HCO3 ternary diagram (Figure 2). Cluster 1 
appears to be very well defined and differentiated from Clusters 2 and 3. The structure of the 
latter clusters is not intuitive. Cluster 3 appears to include the bulk of the remaining samples, 
spanning waters from two geochemically distinct groups. Although consistent with the 
‘Volcanic’ or acid-SO4 classification, Cluster 2 only has four samples.  
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Figure 1: Complete hierarchical cluster analysis of Yellowstone full dataset. 

 

Figure 2: Ternary diagram of Yellowstone full dataset. 
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3.22 Cluster Analysis with PCA 

The results from the hierarchical clustering for the original dataset with reduction via PCA are 
seen in Figure 3. Spring 13WA146 continues to appear as an outlier, but the small cluster from 
the non-reduced data has been eliminated. Those two springs now fall into one of the larger 
clusters.  

 

Figure 3: Complete hierarchical cluster analysis of Yellowstone reduced dataset. 

 

Based upon the results of the hierarchical clustering, a k value of three was chosen for the k-
means analysis in this dataset as well.  Figure 4 is the Cl-SO4-HCO3 ternary diagram of samples 
subdivided into these k-clusters. The distribution of water samples among clusters is now more 
correspondent to classical compositional classification. Like in subsection 3.2.1, Cluster 1 again 
appears well-defined and consists of mature and Cl-rich thermal waters. Cluster 2 is made up of 
peripheral geothermal fluids with ≥50% HCO3, with the exception of sample 13WA136 
intermingling with Cluster 1. Cluster 3 groups a set of low-pH ([HCO3] = 0 ppm), acid-SO4 
springs that lie along the SO4-Cl tie line.  

 

4. Discussion and Conclusions 
The resultant changes in the cluster analysis between the reduced and non-reduced datasets seem 
to provide a clearer, more intuitive analysis and, thus, validating the importance of PCA or some 
other dimension reduction analysis before cluster analysis.  When dealing with thermal fluids, it 
is expected that the cluster results reflect a natural division of the fluids into ‘Volcanic’, 
‘Mature’, and ‘Peripheral’ endmembers. This appears to have been achieved with the reduced 
dataset. Based upon current knowledge of the thermal waters in Yellowstone National Park, we 
divide these fluids into low-pH acid-SO4 fluids and more circumneutral high-Cl ±HCO3 fluids. 
The reduction in the dataset allowed for this natural breakdown to be evident between the 
hierarchical dendrograms in Figures 1 and 3. 
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Figure 4: Ternary diagram of Yellowstone reduced dataset. 

 

A similar clarification was observed during k-means cluster analysis. While we ultimately 
decided to choose a k of three for the reduced data set, the division of samples was more 
pronounced with less overlap and more coincident with the conventional classification scheme of 
the anion ternary diagram. 

For future work with PCA on this dataset, we plan to look at further reduction of the dataset as 
well as apply a different transformation method. Because geochemical datasets are compositional 
(Aitchison, 1982), the initial transformation may not be the most optimal.  
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5. Appendix: R Code  
##LOAD LIBRARIES 

library(readr) #efficient rectangular data reader 

library(dplyr) #for data wrangling 

library(ggtern) #for plotting ternary diagrams 

 

##SET WORKING DIRECTORY 

setwd("file path") 

 

##READ-IN DATA 

YNPchem <- read_csv("YNPchem.csv") 

 

##ORIGINAL DATASET 

#NORMALIZATION 

#Remove the first column which is spring ID because we only 

#need to use quantitative variables for cluster analysis 

data<-(YNPchem[,-c(1,1)]) 

#1 calculate mean - apply to all columns (represented by 2) 

m<-apply(data, 2, mean) 

#2 calculate the standard deviation of all columns 

s<-apply(data, 2, sd) 

#3 calculate the z score 

z<-scale(data,m,s) 

 

#HEIRARCHICAL CLUSTERING 

#DISTANCE 

#Calculate the Euclidian Distance 

distance<-dist(z) 

 

#CALCULATE AND PLOT CLUSTER DENDROGRAM 

#Complete method 

hc.comp<-hclust(distance) 
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windows(50,20) 

plot(hc.comp, labels=YNPchem$ID, cex=0.6) 

#Average method 

hc.avg<-hclust(distance, method="average") 

windows(50,20) 

plot(hc.avg,labels=YNPchem$ID, cex=0.6) 

#Look at cluster membership 

member.c<-cutree(hc.comp,3) 

member.a<-cutree(hc.avg,3) 

table(member.c,member.a) 

 

#SCREE PLOT 

wss<-(nrow(z)-1)*sum(apply(z,2,var)) 

for (i in 2:20) wss[i]<-sum(kmeans(z,center=i)$withinss) 

windows() 

plot(1:20,wss,type="b", xlab="Number of Clusters",  

     ylab="Within Group Sum of Squares", main="Scree Plot") 

 

##K-MEANS CLUSTERING 

k2<-kmeans(z,2) 

#27.2 

k3<-kmeans(z,3) 

print(k2$betweenss/k3$totss*100) 

print(k3$betweenss/k3$totss*100) 

#37.8% 

#Change from 2 to 3 clusters is around 10% which is good. I ran 4 clusters just for 

#fun. It is also a change of less than 10%. The majority of the change happens in  

#the first few clusterings so I'll go with 3. 

 

print(k3$cluster) 

 

cluster <- as.numeric(k3$cluster) 
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#ANION TERNARY PLOT 

anion <- select(data, Cl, SO4, Alkalinity) 

ternary_data <- cbind(cluster, anion) 

windows() 

 

tern <- ggtern(data=ternary_data,aes(x=ternary_data$SO4,y=ternary_data$Cl, 

                                    z=ternary_data$Alkalinity))+geom_mask()+ 

  geom_point(size=2, color=ternary_data$cluster)+ 

  labs(x="SO4",y="Cl",z="HCO3")+theme_classic()+ 

  annotate(geom='text', 

           x=c(0.5,0.02,0.02), 

           y=c(0.1,0.5,0.1), 

           z=c(0.02,0.1,0.5), 

           angle=c(60,300,300), 

           label=paste("",c("Volcanic","Mature","Peripheral")), 

           color="gray40") 

plot(tern) 

 

 

##REDUCED DATASET 

#NORMALIZATION 

#Combine Na and K & Ca and Mg (based on reduction from PCA) 

data.red <- data 

data.red$NaK <- data.red$Na + data.red$K 

data.red$CaMg <- data.red$Ca + data.red$Mg 

data.red <- select(data.red, -c(Na,K,Ca,Mg)) 

#1 calculate mean - apply to all columns (represented by 2) 

m2<-apply(data.red, 2, mean) 

#2 calculate the standard deviation of all columns 

s2<-apply(data.red, 2, sd) 

#3 calculate the z score 
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z2<-scale(data.red,m2,s2) 

 

#HEIRARCHICAL CLUSTERING 

#DISTANCE 

#Calculate the Euclidian Distance 

distance2<-dist(z2) 

 

#CALCULATE AND PLOT CLUSTER DENDROGRAM 

#Complete method 

hc.comp2<-hclust(distance2) 

windows(50,20) 

plot(hc.comp2, labels=YNPchem$ID, cex=0.6) 

 

wss2<-(nrow(z2)-1)*sum(apply(z2,2,var)) 

for (i in 2:20) wss2[i]<-sum(kmeans(z2,center=i)$withinss) 

windows() 

plot(1:20,wss2,type="b", xlab="Number of Clusters",  

     ylab="Within Group Sum of Squares", main="Scree Plot for  

     Reduced Dataset") 

 

##K-MEANS CLUSTERING 

k3.2<-kmeans(z2,3) 

cluster2<-as.numeric(k3.2$cluster) 

 

#ANION TERNARY PLOT 

ternary_data2<-cbind(cluster2, anion) 

 

windows() 

 

tern2 <- ggtern(data=ternary_data2,aes(x=ternary_data2$SO4,y=ternary_data2$Cl, 

                                   z=ternary_data2$Alkalinity))+geom_mask()+ 

  geom_point(size=2, color=ternary_data2$cluster2)+ 
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  labs(x="SO4",y="Cl",z="HCO3")+theme_classic()+ 

  annotate(geom='text', 

           x=c(0.5,0.02,0.02), 

           y=c(0.1,0.5,0.1), 

           z=c(0.02,0.1,0.5), 

           angle=c(60,300,300), 

           label=paste("",c("Volcanic","Mature","Peripheral")), 

           color="gray40") 

plot(tern2) 

 


