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ABSTRACT  

The clogging of the micro particles at the interfaces of porous geothermal reservoir during 
reinjection is a long-standing bottleneck in geothermal utilization. This paper numerically 
simulated the effects of particle density, particle concentration, the ratio of particle size and 
porous media pore size, on the particle migration at the fluid-porous media interface. The 
Lattice-Boltzmann method (LBM) that is easy to deal with complex boundaries is used to 
simulate the fluid flow. By Newton’s law to deal with the particle movement, can solve the 
influence of particle size, geometry and deposition morphology on particle interaction, which is 
difficult to solve for the previous numerical simulation. The conclusions are: (1) The amount of 
particle deposition both at the interface and inside the porous media increases as particle density 
increase. The greater the particle density, the earlier the particle clogging occurs at the interface. 
(2) The particle concentration has no significant effect on the amount of particle deposition at the 
interface, but affects the clogging time at the interface. 

1. Introduction 
Deposition and clogging of micro particles is common during geothermal sandstone reinjection. 
Liu (2016) indicated that in Beijing in 1981, there were 64 reinjection systems. However, only 
13 systems were in operation by 1991, and the rest were stopped due to the clogging. Lindesy 
(1992). indicated that in 1986 Maryland's 207 reinjection systems, 33% stopped operating due to 
the clogging within two years, and by 1990, the number of outage systems rose to 50%. In this 
paper, particle migration in porous geothermal reservoir is simulated using lattice Boltzmann 
method (LBM). The single particle deposition and the collision of two particles were 
respectively simulated. By comparing the moving speed and trajectory of the particles under the 
same condition with previous study, the accuracy of the solid-liquid interface treatment methods, 
the particle motion treatment methods and the calculation method of the collision force between 
particles were validated. Based on this, the deposition of multiple particles in porous media was 
further studied. 
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2. Numerical Methods 

2.1 D2Q9 model 

A complete lattice Boltzmann model usually consists of three parts: the discrete velocity model, 
the equilibrium state distribution function, and the evolution equation of the distribution 
function. D2Q9 model (Qian et al., 1992) was used here to simulate the particle deposition, the 
evolution equation of single relaxation model is: 

 
Figure 1: D2Q9 model of speed diagram 

The speed vector corresponding to this model is defined as 
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where i denotes the speed direction, c = δx/δt, δx and δt are the corresponding grid and time step, 
respectively. For a uniform grid, δx = δt. 

The single relaxation model evolution equation with volumetric force terms is: 

fi(x + eı���⃗ ∆t, t + ∆t) = fi(x�⃗ , t) − 1
τ𝑓
�fi(x�⃗ , t) − fi

eq(x�⃗ , t)� + (1 − 1
2τ

)Fi∆t       (2)                                                       
where 𝑓𝑖(x�⃗ , t) is the density distribution function corresponding to the discrete velocity ei, 𝜏𝑓 is 
dimensionless relaxation time. The equilibrium distribution function 𝑓𝑖
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fi

(eq) = ωiρ �1 + 3
c2

(eı���⃗ ∙ u�⃗ ) + 4.5
c2

(eı���⃗ ∙ u�⃗ )2 − 1.5
c2

u2�             (3)                                                                                            
where 𝜔𝑖 , 𝜌 , 𝑢�⃗ , and c are weighting coefficient, fluid density and the velocity vector, 
respectively. 

The velocity vector and the density of fluid are obtained by  
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The kinematic viscosity of the fluid is defined as follows:  
𝜈 = 1
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2.2 Immersed Boundary-LBM 

Immersed Boundary-LBM 0 is used to deal with solid-liquid two-phase problem and complex 
boundary conditions. The density distribution function 𝑓𝑖

∗(�⃗�, 𝑡 + ∆𝑡) at time 𝑡 + ∆𝑡 is given by 
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Equation (2), and then 𝜌(�⃗�, 𝑡 + ∆𝑡) is given by Equation (4). 𝑈𝑃����⃗ (�⃗�, 𝑡 + ∆𝑡) is particle velocity at  
�⃗� , thus the equilibrium density distribution function is: 

fi
(eq,∗)(x�⃗ , t + ∆t) = ωi �ρ(x�⃗ , t) + ρ0 �

3
c2
�eı���⃗ ∙ 𝑈𝑃�����⃗ (x�⃗ , t + ∆t)��� �+ 4.5

𝑐2
�𝑒𝚤���⃗ ∙ 𝑈𝑃�����⃗ (�⃗�, 𝑡 + ∆𝑡)�

2
− 1.5

𝑐2
𝑈𝑃�����⃗ (�⃗�, 𝑡 + ∆𝑡)2)�(6) 

 
The density distribution function at time 𝑡 + ∆𝑡 is further modified to 

𝑓𝑖(x�⃗ , t + ∆t) = �1 − 𝜑𝐵(x�⃗ )�𝑓𝑖∗(x�⃗ , t + ∆t) + 𝜑𝐵(x�⃗ )fi
(eq,∗)(x�⃗ , t + ∆t)                                                      (7) 

According to Newton's law of motion, the motion of suspended particles in a fluid can be 
expressed as: 
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where 𝑀𝑠 is the mass of the particles, 𝑈𝑐����⃗  is the average speed of the particles, �⃗�𝐼𝐵 is the direct 
force added to each lattice point. This paper uses Equation (9) (Fadlun et al., 2000) to calculate 
the collision force between particles: 
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where x�⃗ 𝑖 and x�⃗ 𝑗 are the center of particles i and j, 𝑅𝑖 and 𝑅𝑗 are the radius of particles i and j, 𝐶𝑖𝑗 
is the standard force, which is buoyancy force in this paper, 𝜀𝑝 is the stiffness coefficient of the 
collision particles. 𝜎 is the safety distance. The calculation of collision force �⃗�𝑤 between the 
particle and the wall is similar to �⃗�𝑐𝑜𝑙. The motion of suspended particles has rotation in addition 
to translation, according to the Newton angular momentum theorem: 
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where 𝐼𝑠 and 𝐼𝑓  are the moment of inertia of the particles and the fluid, 𝜔𝑐 is the particle angular 
velocity, �⃗�𝑐  is the center of the particles. The particle center position and particle velocity at time 
n+1 can be calculated by Eqs.(8) and (10). 

2.3 Program verification 

                  
Figure 2: Biased single particle deposition             Figure 3:  Particle circle abscissa changes over time 
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As shown in Fig. 2, a particle of diameter D is placed in the fluid, the abscissa of the initial 
position deviates from the center line D/2, the particle density ρ=1.00232, and the initial velocity 
is ν=0. The relaxation time τ = 0.65, which is the same as Kang et al. (2011). 

In order to calculate the gravitational acceleration in LBM, the reference Reynolds number is 
used in this paper, which is defined as: 

Re𝑟𝑒𝑓 = 𝑈𝑟𝑒𝑓𝐷/𝜈；  𝑈𝑟𝑒𝑓 = �𝜋（D/2）(ρ𝑟 − 1)g            (11) 

𝑅𝑒𝑟𝑒𝑓=40.5, the calculation area is 4D×160D, the initial state of the fluid is stationary, the left 
and right walls of the channel are set as fixed no-slip boundary conditions, and the upper and 
lower boundary conditions are infinite. Table 1 is a comparison with previous calculations. 

 

Table 1: Reynolds number comparison 

 This article Gan et al.   Kang et al.  

ReT 20.7 21.0 21.2 

 

As can be seen from Fig. 3, the particles gradually move towards the center of the flow channel 
and stabilize there, which is in good agreement with the results of Kang (2011), indicating the 
correctness of program. 

 

3. Simulation of particle Deposition in Porous Media 

            
Figure 4:  The particle deposition in porous media                Figure 5:  Particle deposition  

 

As shown in Figure 4 shows that micro particles are randomly distributed in the porous media. 
The diameter of the porous media  𝐷P=800  µm , the particle size of the suspended particles 
dp=100 µm, the dynamic viscosity 𝜇 = 1 × 10−3 m2/s, and the density𝜌 = 1 g/cm3. The initial 
velocity of particles and fluid is 0. The concentration of particles in the upper 3.7 mm-4.5 mm 
area is kept constant during particle deposition. When particles move out of the area, a 
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corresponding number of particles will be automatically generated to ensure the concentration of 
particles in this area. 

3.1 Effect of Particle Density on Deposition Characteristics 

Figure 5 shows the particle deposition process with  𝜌 = 2.45g/ 𝑐𝑚3 𝑐 = 18.5 个/𝑚𝑚2. It can 
be seen that the particles first deposit on the surface of the porous medium and then gradually 
move through the interface to the inside of the porous medium. The time and the amount of 
deposition are dimensionless, that is, 

 t*=t 𝜇 /( 𝜌𝐷𝑃2),  m*=m/m1            (12) 

where, t* and m* are the dimensionless time and deposition amount, t is the real time, m is the 
deposition amount, and m1 is the reference deposition amount.      

 
Figure 6:   Total particle deposition changes over time at different densities 

 

 
t = 0.4 s                 t = 0.8 s                      t = 2 s                     t = 6 s                  t = 12 s 

Figure 7:   Total particle deposition changes over time (ρ = 3.5 g/cm3) 

 

As can be seen from Figures 6 and 7, total deposition amount of particles increases with time and 
particle density, and the particle deposition rate gradually decreases with time. The particle 
deposition rate has a more obvious turning point. The greater the particle density, the earlier the 
turning point of the deposition rate appears. The reason may be that when the number of particles 
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at the interface reaches a certain amount, the clogging at the interface makes it difficult for the 
particles to migrate to the inside of the porous media; and the greater the particle density, the 
easier it will accumulate at the interface and the earlier the clogging time will occur. 

3.1 Effect of Particle Concentration on Particle Deposition 

 
Figure 8: The change of particle deposition with time under different concentration 

 

 
t= 0 s                       t = 0.4 s                   t = 0.8 s                   t = 2 s                     t = 12 s 

Figure 9：Particle deposition 

 

Figures 8 and 9 show the total particle deposition change over time. It can be seen that the curve 
changes linearly after t=2, and the deposition rate is almost the same at different concentrations, 
the reason for the difference in the deposition amount is mainly the clogging time. 

4. Conclusions 

In this paper, the effect of the particle density and concentration on its deposition at the interface 
of porous media was simulated by LBM based on program validation, and the conclusions were 
obtained: (1) The deposition amount of particles in porous media increases with the increase of 
particle density. The larger the particle density, the earlier the particle clogging occurs at the 
porous media interface. (2) The particle concentration has no significant effect on the deposition 
amount of particle at the interface, but affects the time of clogging at the interface. 
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