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ABSTRACT 

Although the reservoir simulation is widely utilized to predict geothermal reservoir 
performances, the results of the simulation are sometimes different from those actually 
observed in field operations due to non-equilibrium conditions. For example, the recharge 
water sometimes reaches producing wells much earlier than predicted by reservoir 
simulation. Therefore, in this research, we attempted to develop a numerical simulator that 
can deal with the non-equilibrium vaporization of water and condensation of steam for 
predicting geothermal reservoir performances more accurately. 

First, we developed a three-dimensional simulator that can predict the flow behavior of 
geothermal fluids in a non-equilibrium state. Conventional geothermal simulators solve the 
only material balance equation for all the water molecules regardless of the phase condition. 
On the other hand, in the simulator developed in this research, water molecules in the liquid 
phase are distinguished from those in vapor phase, and the two material balance equations are 
derived for water and steam separately. These equations have the terms to express the 
molecular transportation from steam to water and vice versa. Non-equilibrium vaporization 
and condensation of water molecules are expressed by adjusting the kinetic rate of 
transportation of water molecules across phases. 

Next, we expanded the functions of the above simulator, incorporating two types of double 
porosity models, Kazemi and MINC, to reproduce the fluid flow preferentially through 
fractures and faults. 

After verifying the simulator functions, we investigated how the speed of the transportation 
of water molecules across phases affected the geothermal reservoir performances, especially 
those with recharging water. Case studies revealed that the non-equilibrium condition 
hastened the movement of the water injected as recharge water through fractures, which 
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resulted in the water breakthrough earlier than predicted by conventional (equilibrium type) 
simulators. 

 

1. Introduction  
Geothermal power generation is one of the most promising renewable energies because it can 
steadily generate electricity for 24 hours without being affected by the weather. Reservoir 
simulation is widely utilized to predict the production of geothermal energy (i.e., steam and 
hot water). It is experienced, however, that the results of reservoir simulation are sometimes 
different from those actually observed in field operations due to the non-equilibrium state.  

Artificial recharge is popularly used in geothermal power generation. This method is essential 
to enable the long-term production of steam by injecting water into a geothermal reservoir. 
However, the recharge water sometimes reaches producing wells earlier than predicted by 
reservoir simulation.  

One of the reasons for this mis-prediction is the non-equilibrium effects. That is, the injected 
water does not easily vaporize even if the reservoir condition is in the steam region far from 
the water-steam equilibrium condition. Another reason is the presence of fractures. In the 
geothermal reservoir, there exist many fractures, which become the main paths of fluid flow. 
If fractures connect an injection well to a production well, the breakthrough of injected water 
at the production well will be significantly hastened. 

Therefore, in this research, we attempted to develop a simulator that can deal with the non-
equilibrium state and the fractured system to predict geothermal reservoir performances more 
accurately. 

This simulator can deal with the non-equilibrium state, which will contribute to achieving 
more accurate predictions efficiently. In conventional reservoir simulation, it is assumed that 
phase change occurs in the equilibrium state. When solving equations in a simulator, the 
temperature within each grid is regarded as uniform. In reality, however, the temperature of 
the fluid and the rock should vary within each grid due to a temperature gradient. This is one 
of the reasons why the equilibrium state is not necessarily established. It is true that the 
equilibrium state can be expected if the grid size is sufficiently small, but such small grids are 
not assigned in usual simulation, taking the computational time into consideration. The 
simulator dealing with non-equilibrium state can enable the prediction of more accurate phase 
alteration in a reasonably short simulation time. 

We developed the simulator from scratch and validated it using the commercial thermal 
simulator, STARS, developed by Computer Modelling Group Ltd. (CMG). Since the 
computational results of our simulator assuming the equilibrium state well matched those of 
STARS, we could confirm that our simulator can calculate reservoir behavior in the 
equilibrium state accurately. Next, in order to investigate the reservoir performances in the 
non-equilibrium state, we conducted the simulation specifying the smaller kinetic rate 
constant of “Kgen” (1E-8 1/s/K) than that for the equilibrium condition. The results showed 
that the water production started far earlier in the non-equilibrium state than in the 
equilibrium condition.  

Finally, we added the two types of double porosity models (Kazemi and MINC), which are 
popularly used in geothermal reservoir simulation, into the simulator developed in the above. 
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The simulation using these fracture models suggested that the water flowed dominantly in 
fractures and that the effects of non-equilibrium state on the water flow is much more 
significant in fractures than in matrices, which induced the earlier breakthrough of water. 

Through this research, we confirmed that we can predict more accurate geothermal reservoir 
performances by considering both the non-equilibrium state and the fracture system. 

2. Reservoir Simulator (Single Porosity) 
We developed a three-dimensional simulator that can predict the flow behavior of geothermal 
fluids in the non-equilibrium state. 

2.1 Governing Equations 

Conventional simulators usually solve mass balance equation and energy balance equation 
assuming the equilibrium state. On the other hand, in the simulator developed in this research, 
water molecules in the liquid phase are distinguished from those in vapor phase, and the 
material balance equations are derived for water and steam separately. These new material 
balance equations have the terms of ns [mol/m3/s] and nw [mol/m3/s], which express the rate 
of molecular transportation from water to steam and vice versa. The non-equilibrium 
vaporization and condensation of water molecules are expressed by adjusting the kinetic rates 
of the transportation of water molecules across the phases. 
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, where 
P:  pressure [Pa] 
Sl: saturation of phase l 
k: absolute permeability [m2] 
krl: relative permeability of phase l [-] 
ρl: molar density of phase l [mol/m3] 
g: gravitational acceleration [m/s2] 
D: depth [m] 
ql_in/out: injection/production rate of phase l per unit bulk volume [1/s] 
ϕ: porosity [-] 
Hl: molar enthalpy of phase l [J/mol] 
Ul: molar internal energy of phase l [J/mol] 
Rcapa: specific heat of rock [J/mol/K]  
λall: overall thermal conductivity [J/s/m/K] 
T: temperature [K] 
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Our simulator solves Equations (1) through (3) for the three primary unknowns of pressure, 
temperature and water saturation. Since it is impossible to analytically solve the above system 
of non-linear partial differential equations, this equation system is discretized by the finite 
difference method and transformed into a non-linear equation system. This non-linear 
equation system then can be solved by the Newton-Raphson method that is one of the most 
popular numerical methods for solving a non-linear equation system. 

2.2 Definition of ns and nw 

The rates of molecular transportation ns and nw are evaluated based on the difference between 
reservoir temperature and water-steam equilibrium temperature, and on the kinetic rate 
constants of Kgen_s and Kgen_w for water and steam generation. Equation (4) expresses that 
water is generated when the grid temperature (T) is lower than the vaporization temperature 
(Tvap). Furthermore, Equation (4) expresses that water is produced more rapidly when the 
difference between the grid temperature and vaporization temperature becomes large. ϕρsSs 
indicates the molar density of steam in each grid, and the larger this value becomes, the more 
water is likely to be generated. Steam generation term is likewise expressed as Equation (5). 
The equilibrium state can be reproduced with the large enough Kgen_s and Kgen_w, while the 
non-equilibrium state is expressed with the relatively small values of them. 
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The concept of molecular transportation rates of ns and nw is explained as follows: 

For example, when water is injected into a steam-saturated grid, if injected water volume is 
small, the pressure-temperature condition of this grid may be still in the steam region as 
shown in the following P-T diagram (Figure 1). The pressure-temperature condition becomes 
closer to the vaporization line as the volume of injected water becomes larger. 

 

 

Figure 1: Relationship between T and Tvap expressed in P-T diagram 
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In conventional simulators, if the resultant pressure-temperature condition is in the steam 
region, all the water molecules are considered to be the steam state instantaneously 
conforming to the equilibrium condition. In our simulator, however, water molecules are 
considered to become the steam state gradually, depending on the kinetic rate constant, and 
on the product of ϕρwSw and the deviation of pressure-temperature condition of a grid from 
the vaporization line as a driving force. 

 

3. Validation 
After constructing this new simulator, we confirmed that this simulator worked properly. The 
thermal simulator (STARS) developed by CMG was used for the validation of this simulator. 

3.1 One-dimensional Model (Single Porosity) 

To validate our simulator for the calculation of one-dimensional single porosity system, we 
conducted the simulation for the following three cases. 

Case1: ”STARS” 
The results calculated by STARS 

Case2: ”FUJII K=1E-5” 
The results calculated by our simulator assuming the equilibrium state with 
Kgen_s=Kgen_w=1E-5 [1/s/K] 

Case3: ”FUJII K=1E-8” 
The results calculated by our simulator assuming the non-equilibrium state with 
Kgen_s=Kgen_w=1E-8 [1/s/K] 

Since STARS can deal with the equilibrium state only, the results of ”FUJII K=1E-5” (case2) 
should be in a good agreement with those of “STARS” (case1). ”FUJII K=1E-8” (case3) is 
expected to have different results from ”FUJII K=1E-5” (case2) and “STARS” (case1) 
because it calculates reservoir performances in the non-equilibrium state. 

3.1.1 Simulation Specifications (Single Porosity) 

As shown in Figure 2, the reservoir model used in all of the above three cases had dimensions 
of x=1000 [ft], y=100 [ft] and z=100 [ft] with 10*1*1 grid system. It was initially filled with 
steam of 1500 [psia] and 320 [K]. An injection well and a production well were located at 
grids (1,1,1) and (10,1,1), respectively. The injection rate was assumed to be 800 [ft3/day] 
and the production rate was 800 [ft3/day]. Injected water temperature was 50 [℃]. The other 
simulation specifications are shown in Table 1 and Figure 3. 

 

Figure 2: Reservoir model. Water is injected from grid 1 and fluid is produced from grid 10. 
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Table 1 Simulation specifications 

Items Description 
Absolute permeability [mD] 100 
Porosity at reference pressure 𝜙0 [-] 0.2 
Compressibility of rock 𝐶𝑟 [1/Pa] 1.4504×10-9 
Reference pressure 𝑃𝑟𝑒𝑓𝑝 [Pa] 101353.56 
Rock heat capacity 𝐶𝑟 [J/mol/K] 63.79 
Density of rock 𝜌𝑟 [mol/m3] 38447.71 
Time step [day] 1 
Radius of injection well [inch] 6.0 
Radius of production well [inch] 6.0 

 
 

 

 

 

 

Figure 3: Relative permeability used in the simulation. 

 

 

 

3.1.2 Validation and Case Study (Single Porosity) 

First, we compared two cases of simulation, “STARS” (case1) and “FUJII K=1E-5” (case2). 
Since both of these cases assumed the equilibrium state, the results by our simulator agreed 
very well with those of STARS as shown in Figure 4 through Figure 6, which suggests the 
accuracy of our simulator. 
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Figure 4: Time vs. Water saturation (“STARS”(case1) : equilibrium, “FUJII K=1E-5”(case2): 
equilibrium). 

 

 

 

Figure 5: Time vs. Pressure (“STARS”(case1) : equilibrium, “FUJII K=1E-5”(case2): equilibrium). 
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Figure 6: Time vs. Temperature (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): equilibrium). 

 

 

 

Next, we compared two cases of simulation, “STARS” (case1) and “FUJII K=1E-8” (case3). 
The results of “FUJII K=1E-8” (case3) shown in Figure 7 through Figure 9 were a little 
different from those of “STARS” (case1).  Figure 7 shows that the water saturation started to 
increase earlier in “FUJII K=1E-8” (case3) than in “STARS” (case1), because in the non-
equilibrium state, the injected water remained as water phase for a longer time than in the 
equilibrium state. Similarly, the timing when the water saturation reached 1 was retarded in 
“FUJII K=1E-8” (case3) in comparison with “STARS” (case1). The steam initially existing 
in each grid remains as steam for a longer time due to the non-equilibrium state even after the 
pressure-temperature condition of each grid became in the water region by the continuous 
water injection, which resulted in the slow changes in water saturation in the non-equilibrium 
state.  

Figure 8 shows that the pressure changed more gradually in “FUJII K=1E-8” (case3) than in 
“STARS” (case1). In “STARS” (case1), pressure rapidly decreased when the phase altered 
from steam to water. In “FUJII K=1E-8” (case3), however, no abrupt pressure drop were 
observed because phase change occurred slowly in all the grids.  
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Figure 7: Time vs. Water saturation (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): non-
equilibrium). 

 

 

 

 

Figure 8: Time vs. Pressure (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): non-equilibrium). 
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Figure 9: Time vs. Temperature (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): non-
equilibrium). 

 

 

 

Figure 10: Cumulative water production (“FUJII K=1E-5”(case2): equilibrium, “FUJII K=1E-8”(case3): 
non-equilibrium). 
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Figure 10 shows that the production of water started earlier in non-equilibrium state. This is 
because water saturation starts to increase earlier in non-equilibrium state. Figure 11 shows 
the pressure and temperature traverse in the P-T diagram calculated by STARS and our 
simulator. In the cases assuming the equilibrium state (cases1 and 2), when the phase was 
altered from steam to water (in other words, when steam and water coexisted), the pressure 
and temperature changed along the vaporization line. On the other hand, pressure-
temperature condition changed across the vaporization line in the non-equilibrium state 
(case3), even in the two-phase condition. 

 

 

Figure 11: Temperature vs. Pressure (“STARS”(case1), “FUJII K=1E-5”(case2): equilibrium, “FUJII 
K=1E-8”(case3): non-equilibrium). 

 

3.2 Three-dimensional Model (Single Porosity) 

Similarly, we validated our simulator for the three-dimensional single porosity system. We 
conducted the simulation for the following three cases. 

Case1: ”STARS” 
The results calculated by STARS 

Case2: ”FUJII K=1E-5” 
The results calculated by our simulator assuming the equilibrium state with 
Kgen_s=Kgen_w=1E-5 [1/s/K] 

Case3: ”FUJII K=1E-8” 
The results calculated by our simulator assuming the non-equilibrium state with 
Kgen_s=Kgen_w=1E-8 [1/s/K] 

 



Fujii, Ishigami and Kurihara 

3.2.1 Simulation Specifications (Single Porosity) 

The reservoir model used in all of the above three cases had dimensions of x=600 [ft], y=600 
[ft] and z=600 [ft] with 3*3*3 grid system. It was initially filled with steam of 1300 [psia] 
and 320 [K]. An injection well and a production well were located at grids (1,1,3) and (3,3,3), 
respectively. The injection rate was assumed to be 1500 (ft3/day) and the bottom hole 
pressure of production well was 1000 [psia]. Injected water temperature was 50 [℃]. The 
other simulation specifications are shown in Table 1 and Figure 3. 

 

Figure 12: Reservoir model. Water is injected from grid 7 and fluid is produced from grid 27. 

 

 

 

Figure 13: Time vs. Water saturation (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
equilibrium). 
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3.2.2 Validation and Case Study (Single Porosity) 

First, we compared two cases of simulation, “STARS” (case1) and “FUJII K=1E-5” (case2). 

Since both of these cases assumed the equilibrium state, the results by our simulator agreed 
very well with those of STARS as shown in Figure 13 エラー! 参照元が見つかりません。
, which suggests the accuracy of our simulator, as in the previous section. 

Next, we compared two cases of simulation, “STARS” (case1) and “FUJII K=1E-8” (case3). 

Even in the three-dimensional cases, the reservoir performances assuming the non-
equilibrium state showed the tendencies similar to those in one-dimensional cases as depicted 
in Figure 14. Therefore, we conclude that we could successfully expand our simulator to 
three-dimensional system. 

 

Figure 14: Time vs. Water saturation (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): non-
equilibrium). 

 

3.3 Comparison with Small Grid Model (Single Porosity) 

Aiming at examining how our simulator’s functions of calculation for the non-equilibrium 
state worked, we compared the results assuming the non-equilibrium state with those using 
the reservoir model composed of smaller grids through the following three cases. 

Case1: “FUJII eq small” 
The results calculated by our simulator using the model composed of smaller grids shown in 
the right side of Figure 15, assuming the equilibrium state with Kgen_s=Kgen_w=1E-5 [1/s/K] 

Case2: “FUJII eq large” 
The results calculated by our simulator using the model composed of large grids shown in the 
left side of Figure 15, assuming the equilibrium state with Kgen_s=Kgen_w=1E-5 [1/s/K] 
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Case3: “FUJII non-eq large” 
The results calculated by our simulator using the model composed of large grids shown in the 
left side of Figure 15, assuming the non-equilibrium state with the following kinetic rate 
constants: 

Kgen_s(1,1,1)=Kgen_w(1,1,1)=1E-9 [1/s/K], Kgen_s(2,1,1)=Kgen_w(2,1,1)=5E-9 [1/s/K], 
Kgen_s(3,1,1)=Kgen_w(3,1,1)=1E-8 [1/s/K], Kgen_s(4,1,1)=Kgen_w(4,1,1)=5E-9 [1/s/K], 
Kgen_s(5,1,1)=Kgen_w(5,1,1)=1E-9 [1/s/K] 

 

 

Figure 15: Grid system in the large grid case and the small grid case 

 

It is expected that if the size of each grid is sufficiently small, the fluid flow in each grid can 
be accurately simulated even in assuming the equilibrium state. In this section, we examined 
how accurately “FUJII non-eq large” (case3) could calculate the reservoir performances by 
comparing its results with those of “FUJII eq small” (case1). Furthermore, if the results of 
case 3 is close enough to those of case 1, it is manifested that the non-equilibrium model can 
provide the results of the similar accuracy to fine grid model in much shorter computational 
time. 

3.3.1 Simulation Specifications (Single Porosity) 

The reservoir model used in this simulation had dimensions of x=1500 [ft], y=300 [ft] and 
z=300 [ft]. It was initially filled with steam of 1500 [psia] and 325 [K]. The injection rate was 
assumed to be 2000 [ft3/day] and the bottom hole pressure of production well was assumed to 
be 1300 [psia]. Injected fluid temperature was 80 [℃]. The other properties are shown in 
Table 1 and Figure 3. 

3.3.2 Case Study (Single Porosity) 

We compared the results of the above three cases, which are depicted in Figure 20 through 
Figure 22. Figure 16 shows how water saturation changed in each case, where the water 
saturation of grid 1 in “FUJII eq small” (case1) denotes the average water saturation of all the 
small grids included in the large grid 1 (water saturations of grids 2-5 in “FUJII eq small” 
(case1) are defined similarly). Figure 20 through Figure 22 suggest that the results of “FUJII 
eq small” (case1) showed the tendencies similar to those of “FUJII non-eq large” (case3), 
(e.g., earlier start of increase in water saturation and slower speed of increase in water 
saturation). Although the results of case3 are somewhat different from those of case1, these 
differences should have been caused by the gravity effects and the insufficiently adjusted 
kinetic rate constants. 

It can be concluded that even in using large grid, the accurate flow behavior is simulated by 
adopting the non-equilibrium state calculations with appropriate kinetic rate constants. 
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Figure 16: Time vs. Water saturation 

 

 

 

Figure 17: Cumulative steam production 
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Figure 18: Cumulative water production 

 

4. Reservoir Simulator (Fractured Model) 
Since many fractures exist in geothermal reservoirs and these fractures are expected to be the 
main paths of fluid flow, it is essential to deal with fractures in geothermal reservoir 
simulation. In this research, we incorporated the function of double porosity models of 
Kazemi and MINC, which are popularly used in geothermal reservoir simulation, into the 
simulator developed in the previous chapters. 

4.1 Double Porosity/Permeability Model 

The double porosity model was developed by Kazemi in 1969. In the double porosity model, 
we assume the presence of fractures and matrices in each grid. Grids are supposed to be 
divided by sugar cubic model like Figure 19. The parts of slit stand for fractures, while the 
parts of the shape like sugar indicate matrices. Matrix is mainly composed of low 
permeability rock grains. On the other hand, fracture means the clack in the rock and its 
permeability is high. 

 

Figure 19: Sugar cubic model - idealized double porosity model of fractured porous media 
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Fluid flow in this model is schematically explained in Figure 24. In the double porosity 
system, the convection between fracture and adjacent fracture and the convection between 
matrix and fracture are only assumed. In dual permeability system, the convection between 
matrix and adjacent matrix is additionally assumed. 

 

 

 

Figure 20: The flow system of double porosity model 

 

 

 

 

The convection between matrix and fracture is calculated by the equation below.  
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, where lx, ly and lz are called “fracture spacing”, which means the fracture interval in each 
direction as shown in Figure 19. 

The governing equations of the simulator incorporating both the non-equilibrium fluid flow 
and the double porosity model (Kazemi) are given bellow. In this simulator, it is assumed that 
all the fractures are simple spaces and contain no rock grain parts within them. Therefore, the 
accumulation term in the fracture’s energy balance equation does not consider the internal 
energy of rocks. 
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(1) Equations of mass and energy balance at fracture 
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(2) Equations of mass and energy balance at matrix 
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, where ϕf
′ denotes the volume fraction of fracture [-], and ϕm is the porosity in matrix [-]. 

Note that the subscripts “f” and “m” stand for the fracture and matrix, respectively. 
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4.2 MINC Model 

The Multiple Interacting Continua (MINC) model is developed by Pruess and Narasiham in 
1982. As shown in Figure 22, MINC model is one of double porosity models, but the matrix 
part is discretized into a sequence of nested sub-grids. The MINC number of 4 means that 
“fracture” and “matrices 1-3” exist in each grid. 

    

Figure 21: Idealized MINC model of fractured porous media 

 

In the MINC model, we can more accurately describe the heat transfer in the matrix. In the 
double porosity model (Kazemi), the temperature of the entire parts of matrix is considered to 
be the same, while in the MINC model, we can calculate the different temperature for each 
part of the matrix. Therefore, we can express the temperature gradient in matrix by using 
MINC model, which results in the more accurate prediction for fluid flow. 

As depicted bellow, in the MINC model, the convection between matrix and neighboring 
matrix is not considered. 

 

Figure 22: The flow system of MINC model 
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For simplicity, fracture is called “mesh(1)” and multiple sub-matrices are called 
“mesh(2,3,…,n)”. The convection between mesh(p) and mesh(p+1) within the same grid is 
calculated by applying the nodal distance from mesh(p) and mesh(p+1) to Darcy’s law as 
indicated in Figure 27 and Equation (13). 

 

Figure 23: Schema of MINC model for one grid 
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, where Ap means the connecting surface between mesh(p) and mesh(p+1), and (Dp+Dp+1) 
means the nodal distance between mesh(p) and mesh(p+1). 

Dp can be derived from equation below. 

{ } 2/1−−= ppp XXD       (14) 

, where Xp denotes the distance from surface of mesh(1) to mesh(p). This parameter Xp 
depends on ϕ′(p), which is the volume fraction of mesh(p). Once ϕ′(p) is given by user of the 
simulator, Xp can be estimated by solving Equation (15). 
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Finally, we can obtain Ap as 

{ })2)(2()2)(2()2)(2(2 pzpxpzpypypxp XlXlXlXlXlXlA −−+−−+−−= .  (16) 

The governing equations of the simulator incorporating both the non-equilibrium fluid flow 
and the double porosity model (MINC) are given bellow. 

(1) Equations of mass and energy balance f mesh p (p = 1) 
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(2) Equations of mass and energy balance at mesh p (p = 2, 3, …, n) 
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5. Validation and Case Studies 
We executed several simulation runs using the simulator thus coded by combining the 
calculation functions for non-equilibrium state and the double porosity/permeability models, 
in order to examine how our simulator works and how the non-equilibrium state affect the 
fluid flow in fractured system. 

5.1 One-dimensional Model (Dual Permeability) 

First, we validated our simulator for the one-dimensional dual permeability system through 
the following three cases. 
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Case1:”STARS” 
The results calculated by STARS 

Case2:”FUJII K=1E-5” 
The results calculated by our simulator assuming the equilibrium state with 
Kgen_s=Kgen_w=1E-5 [1/s/K] 

Case3:”FUJII K=1E-8” 
The results calculated by our simulator assuming the non-equilibrium state with 
Kgen_s=Kgen_w=1E-8 [1/s/K] 

Since STARS can deal with the equilibrium state only, the results of ”FUJII K=1E-5” (case2) 
should be in a good agreement with those of “STARS” (case1). ”FUJII K=1E-8” (case3) is 
expected to have different results from ”FUJII K=1E-5” (case2) and “STARS” (case1) 
because it calculates reservoir performances in the non-equilibrium state. 

5.1.1 Simulation Specifications (Dual Permeability) 

The reservoir model used in this simulation had dimension of x=1000 [ft], y=100 [ft] and 
z=100 [ft] with 10*1*1 grid system. It was initially filled with steam of 1500 [psia] and 320 
[K]. An injection well and a production well were located at grids (1,1,1) and (10,1,1), 
respectively. The injection rate was assumed to be 500 [ft3/day] and the injection rate was 
1300 [ft3/day]. Injected fluid temperature is 130 [℃]. The other simulation specifications are 
shown in Table 2.  

 

Figure 24: Reservoir model. Water is injected from grid 1 and fluid is produced from grid 10. 

 

Table 2 Simulation conditions 

Items Description 
Absolute effective permeability in fracture 𝑘𝑓 [mD] 100 
Absolute intrinsic permeability in matrix 𝑘𝑚′  [mD] 0.0001 
Fracture Volume fraction 𝜙′𝑓 [-] 0.1 
Porosity in matrix at reference pressure 𝜙𝑚0 [-] 0.1 
Compressibility of rock 𝐶𝑟 [1/Pa] 1.4504×10-9 
Reference pressure 𝑃𝑟𝑒𝑓𝑝 [Pa] 101353.56 
Rock heat capacity 𝐶𝑟 [J/mol/K] 63.79 
Density of rock 𝜌𝑟 [mol/m3] 38447.71 
Time step [day] 1 
Radius of injection well [inch] 6.0 
Radius of production well [inch] 6.0 
Fracture spacing x, y, z [ft] 10, 10, 10 

 



Fujii, Ishigami and Kurihara 

 

5.1.2 Validation and Case Study (Dual Permeability) 

First, we compared the results of “STARS” (case1) with those of ”FUJII K=1E-5” (case2). 

The results of ”FUJII K=1E-5” (case2) fairly agreed with those of “STARS” (case1) as 
shown in Figure 25 through Figure 30. The water saturation profiles in fractures calculated 
in ”FUJII K=1E-5” (case2) were slightly different from those in “STARS” (case1), probably 
because the kinetic rate constant of 1E-5 [1/s/K] applied in case2 were slightly large to 
exactly express the equilibrium state in fractures, where fluid velocity is far faster than in 
matrices. 

Since the difference in the simulation results between cases1 and 2 was sufficiently small, it 
was concluded that the double porosity model of our simulator functioned properly. 

 

 

 

 

 

Figure 25: Time vs. Water saturation at fracture (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
equilibrium).  
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Figure 26: Time vs. Water saturation at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
equilibrium). 

 

 

 

Figure 27: Time vs. Pressure at fracture (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
equilibrium).. 
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Figure 28: Time vs. Pressure at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
equilibrium).. 

 

 

Figure 29: Time vs. Temperature at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
equilibrium).. 
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Figure 30: Time vs. Pressure at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
equilibrium). 

 

Next, we compared results of “STARS” (case1) with those of ”FUJII K=1E-8” (case3). 

As shown in Figure 31 through Figure 36, the results of “FUJII K=1E-8” (case3) were 
different from those of “STARS” (case1). Figure 31 shows that the water saturation in 
fractures started to increase earlier and reached 1 later in the non-equilibrium state, as in the 
single porosity system. On the other hand in matrices, the timings of both the start of increase 
in water saturation and the 100% of water saturation in case3 were slower than those in case1 
as depicted in Figure 32. 

In fractures, it takes a time for the injected water to be steam in the non-equilibrium state, 
which hastens the water breakthrough. In the later stage, even if the pressure-temperature 
condition becomes in the water region of the P-T diagram, the steam initially existing in 
fractures remains as steam for a longer time due to the non-equilibrium state, which results in 
the slow changes in water saturation in the non-equilibrium state. 

On the other hand in matrices, since the quite small amount of water intrudes into matrices, 
water saturation increases due mainly to the condensation of steam, which should be slow in 
the non-equilibrium state. Hence, in the non-equilibrium state, the water saturation starts to 
increase and reach 1 more slowly than in the equilibrium state. 

Since the fluid flow is dominant in fractures, the water breakthrough occurred earlier in the 
non-equilibrium state than in the equilibrium state, as shown in Figure 41. 

Through the above simulation, we concluded that the function of our simulator for dealing 
with non-equilibrium state worked very well even with the double porosity/permeability 
model. 
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Figure 31: Time vs. Water saturation at fracture (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): 
non-equilibrium). 

 

 

 

Figure 32: Time vs. Water saturation at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): 
non-equilibrium). 
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Figure 33: Time vs. pressure at fracture  (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): non-
equilibrium). 

 

 

 

Figure 34: Time vs. pressure at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): non-
equilibrium). 
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Figure 35: Time vs. temperature at fracture  (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): 
non-equilibrium). 

 

 

 

Figure 36: Time vs. temperature at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): non-
equilibrium). 
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Figure 37: Cumulative water production  (“FUJII K=1E-5”(case2): equilibrium, “FUJII K=1E-

8”(case3):non-equilibrium). 

 

 

5.2 Three-dimensional Model (Double Porosity) 

In order to validate the double porosity model of our simulator in the three-dimensional 
system, we conducted simulation for the following these three cases. 

Case1:”STARS” 
The results calculated by STARS 

Case2:”FUJII K=1E-5” 
The results calculated by our simulator assuming the equilibrium state with 
Kgen_s=Kgen_w=1E-5 [1/s/K] 

Case3:”FUJII K=1E-8” 
The results calculated by our simulator assuming the non-equilibrium state with 
Kgen_s=Kgen_w=1E-8 [1/s/K] 

5.2.1 Simulation Specifications (Double Porosity) 

The reservoir model used in this simulation had dimensions of x=600 [ft], y=600 [ft] and 
z=600 [ft] with 3*3*3 grid system. It was initially filled with steam of 1500 [psia] and 325 
[K]. An Injection well and a production well are located at grids (1,1,3) and (3,3,3), 
respectively. The injection rate was assumed to be 4000 [ft3/day] and the bottom hole 
pressure of production well was assumed to be 1300 [psia]. Injected fluid temperature is 80 
[℃]. The other simulation specifications are shown in Table 2. 
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Figure 38: Reservoir model. Water is injected from grid 7 and fluid is produced from grid 27. 

 

5.2.2 Validation and Case Study (Double Porosity) 

First, we compared the results of two cases of simulation, “STARS” (case1) and “FUJII 
K=1E-5” (case2). 

Since both of cases considered the equilibrium state, the results of “FUJII K=1E-5” (case2) 
showed a good agreement with those of “STARS” (case1) as shown in Figure 39 and Figure 
40, which suggests that the double porosity model incorporated into our simulator functioned 
well in the three-dimensional system. Note that the slight difference in the results between 
these two cases should have been caused by the insufficiently small kinetic rate constant as in 
the one-dimensional system. 

 

Figure 39: Time vs. water saturation at fracture (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
non-equilibrium). 
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Figure 40: Time vs. water saturation at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-5”(case2): 
equilibrium). 

 

Next, we compared the two cases of simulation, “STARS” (case1) and “FUJII K=1E-8” 
(case3). 

As shown in Figure 41 and Figure 42, it was confirmed that the results in the three-
dimensional system showed the same tendencies as in the one-dimensional system. That is, in 
the non-equilibrium state, the water saturation in fractures started to increase earlier and 
reached 1 later than in the equilibrium state, while the timings of both the start of increase in 
water saturation and the 100% of water saturation were slower than in the equilibrium state. 

 

Figure 41: Time vs. water saturation at fracture (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): 
non-equilibrium). 
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Figure 42: Time vs. water saturation at matrix (“STARS”(case1): equilibrium, “FUJII K=1E-8”(case3): 
non-equilibrium). 

 

5.3 One-dimensional Model (MINC Model) 

Since STARS are not equipped with the MINC model, we conducted the following four case 
studies for investigating the effects of the division of matrix, fracture spacing and overall 
thermal conductivity on the reservoir performances simulated with the MINC model, only 
using our simulator developed in this research. Note that the matrix part in each grid were 
divided into two (MINC3) or four (MINC5) sub-matrices in these case studies. 

Case1:” FUJII MINC3[5] 10H” 
The results calculated by our simulator with small fracture spacing (lx= ly=lz=10 [ft]) and high 
thermal conductivity (𝜆𝑎𝑙𝑙 𝑚=328320 [J/m/day/K]) 

Case2:” FUJII MINC3[5] 10L” 
The results calculated by our simulator with small fracture spacing (lx= ly=lz=10 [ft]) and low 
thermal conductivity (𝜆𝑎𝑙𝑙 𝑚=103680 [J/m/day/K]) 

Case3:” FUJII MINC3[5] 100H” 
The results calculated by our simulator with large fracture spacing (lx= ly=lz=100 [ft]) and 
high thermal conductivity (𝜆𝑎𝑙𝑙 𝑚=328320 [J/m/day/K]) 

Case4:” FUJII MINC3[5] 100L” 
The results calculated by our simulator with large fracture spacing (lx= ly=lz=100 [ft]) and 
low thermal conductivity (𝜆𝑎𝑙𝑙 𝑚=103680 [J/m/day/K]) 

If the fracture spacing is large and/or the thermal conductivity is low, the temperature 
gradient in matrix should be large because fluid and heat are not interfered efficiently. 
Therefore, in these cases, it is expected that the simulation results should vary depending on 
the number of sub-matrices in the MINC model. On the other hand, if fracture spacing is  
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small enough and thermal conductivity is high enough, the temperature gradient in matrix 
should be small because of the good communication of fluid and heat, which should result in 
the small effect of the number of sub-matrices in the MINC model on simulation results. 

5.3.1 Simulation Specifications (MINC Model) 

As shown in Figure 43, the reservoir model used in this simulation had dimensions of x=1000 
[ft], y=100 [ft] and z=100 [ft] with 10*1*1 grid system. It was initially filled with steam of 
1500 [psia] and 320 [K]. An Injection well and a production well were located at grids (1,1,1) 
and (10,1,1), respectively. The injection rate was assumed to be 800 [ft3/day] and the 
injection rate was 1500 [ft3/day]. 

 

 

 

Figure 43: Reservoir model. Water is injected from grid 1 and fluid is produced from grid 10. 

 

 

 

5.3.2 Case Study (MINC Model) 

Figure 44 through Figure 47 show the change in water saturation in fractures. As shown in 
Figure 44 and Figure 45, in “FUJII MINC3[5] 10H” (case1) and “FUJII MINC3[5] 10L” 
(case2), which were the cases of small fracture spacing, no difference was observed in the 
simulation results between MINC3 (two sub-matrices) and MINC5 (four sub-matrices). On 
the other hand, as shown in Figure 46, in “FUJII MINC3[5] 100H” (case3), which was the 
case of large fracture spacing and high thermal conductivity, the water saturation profiles 
simulated with MINC5 was more like those in the non-equilibrium state (i.e., early start of 
increase in water saturation and slow increase in water saturation). This tendency was 
exaggerated as the thermal conductivity became lower, as shown in Figure 47. 

Since our simulator with the MINC model calculated the reasonable reservoir performances, 
it can be concluded that the MINC model of our simulator functioned properly. 
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Figure 44: Time vs. water saturation in fracture (fracture spacing: small, thermal conductivity: high) 

 

 

 

 

 

Figure 45: Time vs. water saturation in fracture (fracture spacing: small, thermal conductivity: low) 
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Figure 46: Time vs. water saturation in fracture (fracture spacing: large, thermal conductivity: high) 

 

 

 

 

Figure 47: Time vs. water saturation in fracture (fracture spacing: large, thermal conductivity: low) 
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6. Conclusions 
In this research, a new geothermal reservoir simulator which can deal with the non-
equilibrium state and fractured system was successfully developed. Through the simulation 
using this simulator, the following conclusions were obtained. 

(1) It was confirmed that our simulator worked accurately for the equilibrium state fluid flow 
through the comparison with the simulation results by STARS of CMG. 

(2) Applying the small kinetic rate constants of Kgen _w and Kgen _s (approximately 1E-8 
[1/s/K]), the non-equilibrium phase alteration could be reproduced in our simulator. In the 
non-equilibrium state, the water saturation was predicted to start to increase earlier and to 
increase more slowly than in the equilibrium state, which suggests that our simulator can 
predict the geothermal reservoir performances with artificial recharge more accurately. 

(3) The results of the simulation assuming the equilibrium state with fine grids was close to 
those assuming the non-equilibrium state with coarse grids rather than to those assuming the 
equilibrium state with coarse grids. These results show the promise of the non-equilibrium 
flow simulation combining appropriate kinetic rate constants and coarse grid for more 
accurate simulation in shorter computational time. 

(4) It was revealed that the non-equilibrium condition hastened the movement of the injected 
(recharge) water through fractures, which resulted in the water breakthrough earlier than 
predicted by conventional (equilibrium type) simulators. 
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