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ABSTRACT 

Pressure transient analysis (PTA) of geothermal wells requires numerical models rather than 
conventional analytical models due to high temperatures and reservoir complexity. For this 
reason a framework has been recently developed for using numerical simulation for PTA, 
utilising the TOUGH2 simulator and automated with the PyTOUGH scripting code. The basic 
radial grid design has the flexibility to include reservoir boundaries by modification of the block 
volumes and surface areas. In this case study a channel boundary is implemented as two linear 
impermeable boundaries. The model is then matched to field data from an injection-falloff test in 
a New Zealand geothermal well. This inverse modelling process utilises software for parameter 
estimation and uncertainty analysis (PEST). A good match indicates that Well-X lies within a 
reservoir channel of approximately 130m width. In the process the numerical PTA framework is 
demonstrated as a viable alternative to analytical PTA. Conventional analytical PTA is included 
for comparison, utilising the software SAPHIRTM. Both numerical and analytical models require 
weighting of the intermediate- and late-time field data in order for the model to match during this 
period. The numerical and analytical model matches appear very similar in the derivative plot 
and history plot, however the estimated parameters are different. The numerical results are more 
reliable as they account for the injectate temperature effect.  
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1. Introduction 
Pressure transient analysis (PTA) is problematic for the geothermal industry. Conventional oil 
and gas methods utilise analytical models which frequently do not fit geothermal field datasets, 
or they yield unlikely results (McLean and Zarrouk, 2015a). The issue lies fundamentally in the 
fact that geothermal reservoirs are high temperature with complex structure. Geothermal 
reservoirs can have temperatures over 300°C, are connected to the wellbore over many hundreds 
of metres of open hole and contain large networks of fractures. Oil and gas wells are cooler, 
typically connected over a few tens of metres and usually to a simpler stratified lithology. Due to 
high temperatures and complexity, geothermal reservoirs violate several fundamental simplifying 
assumptions which are required for the formulation of analytical models, including the 
assumptions that the system is isothermal, with uniform and linear fluid properties and horizontal 
flow (McLean and Zarrouk, 2017).  

Therefore complex systems such as geothermal reservoirs require numerical models, which do 
not require these assumptions to be made. To enable this numerical PTA across the geothermal 
industry and make it comparable between different wells and well tests, a framework has been 
established with various guidelines on the model design and other simulation parameters 
(McLean and Zarrouk, 2017). The basic radial grid design produces a response equivalent to an 
infinite uniform porous reservoir from analytical PTA theory. The inclusion of reservoir 
boundaries is achieved by modification of the block volumes and surface areas, and has 
previously been justified and implemented for a linear impermeable boundary (McLean and 
Zarrouk, 2017). In this case study a simple modification of the PyTOUGH code includes two 
linear impermeable boundaries instead of one, thus creating a channel with the well in the centre, 
which is then applied to field data from an injection-falloff test in Well-X in New Zealand.  

 

2. Background 
2.1 Framework for Numerical PTA 

A framework has been developed and published as a guide to numerical PTA for geothermal 
well testing (McLean and Zarrouk, 2017) using the TOUGH2 (Pruess, 1991) reservoir simulator. 
The objective of the framework is to enable numerical PTA by providing answers to many 
questions which arise during setup of the model grid and simulation parameters, and also to 
promote comparability of results. The PyTOUGH scripting code (Croucher, 2011) is used for 
automation, for example by automating grid generation, model runs and extraction of results. 
The basic grid design is a radial grid with a central well block, a skin zone in the proximity of the 
well and a reservoir zone beyond (Figure 1). The well block has special parameters designed to 
approximate the behaviour of a well during testing, including high porosity, permeability and 
well compressibility (McLean and Zarrouk, 2017). The process of matching numerical model 
results to field data is an inverse modelling process which can be achieved for this model using 
the parameter estimation software PEST, which is model-independent (Doherty, 1994).  
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Figure 1: Schematic of radial model design using numerical PTA framework (from McLean and Zarrouk, 
2017). 

 

2.2 Linear Impermeable Boundary Model 

The basic radial grid of Figure 1 can be modified to represent linear boundaries in the reservoir. 
Basic geometry can be used to modify the grid block volumes and surface areas as if cut by a 
linear feature (Figure 2). The calculation only requires specification of a single parameter, the 
perpendicular distance from the well to the boundary. The calculation of these modified volumes 
and surface areas and insertion into the TOUGH2 input file is automated within the PyTOUGH 
script (McLean and Zarrouk, 2017).  

 

 

 

Figure 2: Schematic of modification of radial grid to include a linear impermeable boundary, with definition 
of geometry elements used in the volume and surface area calculations (from McLean and Zarrouk, 
2015b).  
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3. Field Data 

3.1 Well Details and Raw Data 

The field data used in this case study comes from Well-X in New Zealand, a large diameter 
exploration well, which at the time of testing had 13 3/8” production casing and no perforated 
liner. The open-hole interval is 940m long, with 9 feed zones identified over that length. 
Injection/fall-off testing was carried out shortly after drilling, with three increasing injection 
rates (46, 93, 139 m3/h) followed by a falloff to zero flow (Figure 3a). The downhole pressure-
temperature tool is located at the casing shoe rather than within the permeable reservoir due to 
the possibility of formation collapse in the unlined open-hole section during testing. The 
reservoir temperature is 172°C and the temperature of the injection water is 27°C at the tool 
depth immediately prior to the falloff, and is 51°C by the end of the falloff.    

 

 

 

Figure 3: a) Field data: injection flow rate and pressure vs time; b) Close-up of pressure data showing minor 
rounding at the start of the fall-off, and the corrected data.  

 

 

In this case the flow rate was only metered during part of injection Rate 1, and not for the 
remainder of the test. It is therefore not possible to consider analysing the pressure transients as 
the pressure builds up after the Rate 1-2 flow change or the Rate 2-3 flow change, as the flow 
data in these periods is based on a single data point and any flow fluctuations are not known. The 
pressure data is very minorly rounded at the beginning of the fall-off. This is due the 
impossibility of creating a perfect step-change in flow rate in the real world, however it is easily 
corrected using the cut-shift-fill method described by McLean and Zarrouk (2015a) (Figure 3b).  

3.2 Pressure Derivative and Test Diagnosis 

A derivative plot of the fall-off data (Figure 4) is a cornerstone of this analysis and allows for the 
“diagnosis” of the well test, which is the selection of models which in combination are likely to 
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fit the field data. The pressure derivative shows many classic features, listed here along with the 
model chosen to represent them:  

• Unit-slope in early-time: wellbore storage model 
• Hump during transition: skin model 
• Flat derivative in intermediate time: infinite-acting radial flow model (IARF) 
• 0.4-unit-slope in late-time: channel boundary model with well in centre 

 

 

Figure 4: Derivative plot of field data: log-log plot of pressure change (grey) and pressure derivative (black) 
during the fall-off, showing characteristic features and corresponding observation group definitions.  

 

To aid the inversion process the field observations have been split into four observation groups 
based on the features of the pressure derivative as listed above (Figure 4): 

• Group ‘w’: early-time unit-slope (0 – 30s) 
• Group ‘x’: transition (30 – 600s) 
• Group ‘y’: intermediate-time flat derivative (600 – 2500s) 
• Group ‘z’: late-time boundary (>2500s) 

 

4. Channel Boundary Model 
4.1 Implementation in PyTOUGH 

The implementation of a channel boundary model in PyTOUGH is achieved via a slight 
modification of the linear impermeable boundary model script (Section 2.2). The volumes and 
surface areas to be “removed” by a single linear boundary (Figure 2) are doubled, to represent 
two boundaries at an equal distance from the well. The channel is characterised by a single 
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parameter, the distance L from the well centre to both boundaries (Figure 5). The azimuth of the 
two boundaries shown in Figure 5 is for demonstration only, as it cannot be predicted from a 
single well PTA. 

 

 

Figure 5: Schematic of radial grid modified by two linear impermeable boundaries with well in centre, 
characterised by the well-to-boundary distance (L).  

 

4.2 Typical Channel Model Response 

The derivative plot of Figure 6 shows a typical channel response as the channel narrows from 
L=500m to L=1m (1000m to 2m total channel width). The response characteristic of a channel is 
a pressure derivative that rises in an approximately 0.4-unit-slope (Figure 6). For sufficiently 
long simulations the derivative steepens very slightly in late-time. However, this is unlikely to be 
observed in field data which are rarely measured for that long. As the channel narrows, the effect 
of the boundary appears earlier in the data and runs into the transition from wellbore storage. 
Hence when the channel is very narrow the system never experiences infinite-acting radial flow 
(IARF), instead transitioning from wellbore storage directly into the boundary response. The 
pressure responses are curved and appear to have no characteristic features. As the channel 
narrows (L=1m or L=2m in Figure 6) the pressure response becomes approximately parallel to 
the derivative response, with 0.4-unit-slope. This resembles the parallel pressure and pressure 
derivative responses of finite-conductivity or infinite-conductivity fractures, and has an 
intermediate slope between the two. The finite-conductivity pressure and pressure derivative 
responses have a 0.25-unit-slope, and the infinite-conductivity responses have a 0.5-unit-slope 
(Horne, 1995).   

It can be seen that the modelled pressure derivative becomes noisy for large values of L e.g. 
L=1000m in Figure 6. This occurs when the overall pressure change is very small as there is an 
insufficient number of significant digits available in the TOUGH2 output file to handle such 
small pressure changes (McLean and Zarrouk, 2015b). 
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Figure 6: Log-log derivative plot showing typical channel model response: 0.4-unit-slope pressure derivative. 

 

4.3 Setup of Channel Model for Well-X  

The numerical model has been set up following the guidelines from the framework (Section 2.1). 
Only two parameters warrant discussion: the layer thickness chosen to represent the reservoir, 
and injectate temperature to represent the average temperature of injectate as it goes into the 
reservoir.  

It is known that the model output is sensitive to the layer thickness chosen to represent the 
reservoir and the guidelines state the entire open-hole length of the well should be used unless it 
is known that some part can be excluded with certainty (McLean and Zarrouk, 2017). In the case 
of Well-X the open-hole length is 940m and permeable zones have been observed over that 
entire length (Section 3.1) and so the model thickness is set at 940m.  

The injectate temperature is recommended to be the temperature in the wellbore at the tool depth 
immediately prior to the fall-off (McLean and Zarrouk, 2015c), which in this case is 27°C. 
However this number is supposed to represent the average temperature of the injectate at 
reservoir levels, and the tool during this test is up in the casing shoe, not down in the reservoir. 
However, this value is still used due to a lack of deeper data. The injectate temperature used will 
affect the results for skin factor but not permeability (McLean and Zarrouk, 2017).   

5. Results and Discussion 

5.1 Improving Early-Time Wellbore Storage Match 

The well volume V and well compressibility c as estimated by following the guidelines (McLean 
and Zarrouk, 2017) were 117 m3 and 1.3e-07 Pa-1. The model response using these fixed 
parameter values was not a good match to the early-time field data (Figure 7). As these are 
estimates only, it is legitimate to adjust them slightly to match the early-time data. A good match 
to the early-time data is obtained in Figure 7 (ignoring any later field data for now) with an 
adjusted well volume of 100m3 and well compressibility of 1.1e-07 Pa-1 (a decrease of 15% for 
each).  
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Figure 7: Log-log derivative plot demonstrating effect of adjusting wellbore parameters on model response – 
entire model response shifts to the left as well volume and compressibility decrease (red to blue).  

 

5.2 Number of Variable Parameters 

The fixed parameters well volume V, well compressibility c and injectate temperature Tinj are 
obtained by a process of estimation, as specified in the framework. It logically follows to attempt 
to obtain estimates for them by allowing these to be variable parameters during the inversion 
process. The usual four variable parameters are: reservoir permeability k, skin factor s, well to 
boundary distance L and initial reservoir pressure Pi. As a first attempt, three variable parameters 
were added: well volume V, well compressibility c and injectate temperature Tinj bringing the 
total to seven variable parameters. The effect of this change is shown in a derivative plot (Figure 
8) and the estimated parameters (Table 1).  

Confidence limits are narrow for the original four parameter scenario (Table 1). For the seven 
parameter scenario the estimated values are similar however the confidence limits are so wide 
these results are useless. Some values in the range are physically impossible, such as injecting 
water at a negative temperature and a well having a negative volume. Additionally the 
confidence in the estimated value of skin factor s is significantly decreased due a high correlation 
between s and Tinj which is expected as the injectate temperature effect has the same appearance 
as skin (McLean and Zarrouk, 2015c).  

The derivative plot (Figure 8) shows that the seven parameter scenario sacrifices the early-time 
match (group ‘w’) for an improved match during the transition period (group ‘x’), a very slight 
rise in intermediate-time (group ‘y’) and negligible difference in late time (group ‘z’), which is 
an improved match overall. Fixing both the well volume and compressibility effectively ‘pins’ 
the response to the early-time unit-slope, which then affects the match at later times. Allowing 
some wellbore parameters to be variable effectively ‘unpins’ the response in early-time and 
allows a better overall match to the field data.  Despite this improvement in the derivative plot, 
allowing V, c and Tinj to all be variable parameters results in unacceptable levels of uncertainty. 

Therefore a further attempt was made by adding only one variable parameter: the well 
compressibility c for a total of five variable parameters. It is known that well volume and 
compressibility (V and c) are highly correlated and a decrease in either parameter will shift the 
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model response to the left on a log-log plot (Figure 7). Therefore the well volume is excluded 
due to correlation with the compressibility, and also the injectate temperature is excluded due to 
correlation with the skin factor. The effect of this change is shown in the derivative plot (Figure 
8) and estimated parameters (Table 1).  

In this case the confidence limits are narrow for all five parameters (Table 1), while retaining the 
improved shape of the derivative (Figure 8). The very slight rise in the derivative during 
intermediate time (group ‘y’) results a decrease in the estimated permeability k from 19.1 mD 
(four parameters) to 16.1 mD (five parameters). There is also a very minor decrease in skin 
factor s from -1.7 to -2.1, very minor increase in boundary distance L from 57 to 61m and no 
change to initial reservoir pressure Pi.  

 

 
Figure 8: Effect of adding variable parameters to the inversion: original four parameters (red), five 

parameters (green) and seven parameters (blue).  

 

Table 1: Estimated parameters with 95% confidence limits for four, five and seven variable parameter 
scenarios. 

 Four parameters Five parameters Seven parameters 
Parameter Estimated 

value 
Confidence 

limits 
Estimated 

value 
Confidence 

limits 
Estimated 

value 
Confidence 

limits 
k [mD] 19.1 18.4 – 19.8 16.1 15.7 – 16.5 16.1  15.6 – 16.6 

s -1.7 -1.8 - -1.6 -2.1 -2.1 - -2.0 -2.1 -3.1 - -1.1 
L [m] 57 56 - 58 61 61 - 62 61 60 - 62 

Pi  [bar] 22.81 22.79 – 22.83 22.81 22.79 – 22.82 22.81 22.79 – 22.83 
c [Pa-1] 1.1e-07 (fixed) 8.5e-08 8.3e-08 – 

8.8e-08 
7.3e-08   -1.6e-08 – 

1.6e-07 
V [m3] 100 (fixed) 100 (fixed) 117 -31 - 265 
Tinj [°C] 27 (fixed) 27 (fixed) 25  -20 – 69 
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5.3 Improving the Intermediate- and Late-Time Match 

A model with five variable parameters (explained in Section 5.2) and no weighting of the 
observation groupings is the starting point for this inversion process. The resulting estimated 
parameters are given in Table 2 and derivative plot in Figure 9. 

With no weighting of the field observations the model does not reproduce the shape of the field 
data, specifically it does not reproduce the section of flat derivative, instead cutting through the 
observations without flattening at the correct level (Figure 9). This model has high permeability 
(36.6 mD) which sends the derivative below the flat derivative in the field data, and then relies 
on bringing the boundary closer (42 m) to bend the model response back up towards the field 
data. In this case infinite-acting radial flow is never achieved and the response goes straight from 
the transition into the boundary response. In addition to the poor visual match, the 95% 
confidence limits on the estimated parameters are wide, though not completely unreasonable 
(Table 2). The value for skin is positive (0.5) which is an unlikely result.  

All observation groups should make a comparable contribution to the objective function to 
ensure that one group does not dominate the inversion process (Doherty, 2010). With no 
weighting the contributions of groups ‘y’ and ‘z’ (the groups containing the most reservoir 
information) to the objective function are less than 15% of the total, which is clearly undesirable 
as the reservoir is of primary interest.  

Weighting group ‘y’ and ‘z’ by 10 improves the intermediate- and late-time match (Figure 9). 
The derivative flattens around the correct level, though the match in the transition period (group 
‘x’) is not as good. The contribution of ‘y’ and ‘z’ to the objective function is 56% which is an 
improvement, however group ‘y’ still contributes four times less than ‘z’. The permeability is 
lower than the unweighted case (16.1 mD) and the boundary is further away (61m). The skin 
factor is negative (-2.06) which is far more likely than a positive value as a well drilled with 
aerated water and no mud has no likely mechanism for the creation of positive skin. The 95% 
confidence limits are very narrow for all estimated parameters.  

One further change is made to the group weighting, to increase the contribution of group ‘y’ to 
the objective function and improve the match in the section of flat derivative. The weighting of 
group ‘y’ is increased to 30 and the others left unchanged. The contribution of ‘y’ and ‘z’ to the 
objective function together becomes 61% and the contribution of ‘y’ is now half that of ‘z’ which 
is more reasonable. The model match changes very little from the previous case (Figure 9), 
though the derivative flattens fractionally higher. Thus the estimated permeability is very slightly 
lower (15.0mD) and also the skin factor is slightly lower (-2.2). All the estimated parameter 
values are similar to the previous case, and the 95% confidence limits are even narrower.  

The results for the second weighted case (weighting w, x, y, z as 1, 1, 30, 10) are the final 
interpreted results (Table 2): k = 15.0 mD, which means kh = 14100 mD.m for the thickness of 
940m, s = -2.2, L = 64m and Pi = 22.83 bara. 
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Figure 9: Log-log derivative plot of numerical PTA model responses for three scenarios with different 

weighting of observation groups.  

 

 

Table 2: Numerical PTA results: estimated parameters and 95% confidence limits.  

Weighting 
of groups:  
w, x, y, z 

 k 
[mD] 

s L 
[m] 

Pi 
[bar a] 

c 
[1/Pa] 

1, 1, 1, 1 estimated value 36.6 0.5 42 22.78 9.7e-08 
95% confidence 

limits 
29.2 – 45.9 -0.5 – 1.6 37 - 46 22.75 – 22.82 9.5e-08 – 9.9e-08 

1, 1, 10, 10 estimated value 16.1 -2.06 61.4 22.81 8.5e-08 
95% confidence 

limits 
15.7 – 16.5 -2.11 - -2.01 60.5 – 62.2 22.79 – 22.82 8.3e-08 – 8.8e-08 

1, 1, 30, 10 estimated value 15.0 -2.20 64.1 22.83 8.2e-08 
95% confidence 

limits 
14.8 – 15.2 -2.23 - -2.18 63.6 – 64.6 22.82 – 22.84 7.9e-08 – 8.5e-08 

 

5.4 Conventional Analytical PTA 

Conventional PTA based on analytical models has been carried out on the field data using the 
software SAPHIRTM. This has been done in order to compare the results to those from numerical 
modelling to see if the results are different and which type of PTA fits the field data best. The 
“parallel faults” model within SAPHIRTM is the closest equivalent to the numerical channel 
model. The initial model placement - which is the starting point for the inversion – is generated 
automatically by the software.  

Two inversions are completed, the first an unweighted case and then a weighted case with the 
same weighting as the best-fit numerical model (Section 5.3). The model fits are shown in a 
derivative plot in Figure 10 and the corresponding estimated parameters in Table 3.  

0.1

1

10

1 10 100 1000 10000 100000

Pr
es

su
re

 [b
ar

]

Time [s]

field P

field dP

W=1,1,1,1 P

W=1,1,10,10 P

W=1,1,30,10 P

W=1,1,1,1 dP

W=1,1,10,10 dP

W=1,1,30,10 dP

Group 'w':
weight = 
always 1

Group 'x':
weight = 
always 1

Group 'y':
weight = 

1 or 10 or 30

Group 'z':
weight = 1 or 10



McLean and Zarrouk 

 
Figure 10: Log-log derivative plot of analytical PTA model responses for two scenarios with different 

weighting of observation groups.  

 

The initial model match with no weighting is quite close to field data, though the derivative does 
not flatten at the correct level. Increasing the weighting for late-time data improves the model 
match for groups ‘y’ and ‘z’ and also slightly for the transition group ‘x’. The analytical software 
provides less information on the inversion process and hence the contribution of each 
observation group to the objective function is not known in each case.  

One important difference to note between the analytical model and the numerical one is that the 
analytical parallel faults model estimates the distance to each of the two faults separately. The 
distances are equal in the unweighted case, and become different for the weighted case when 
there is more emphasis on the late-time data (Table 3). This raises a fundamental consideration 
for modelling: models of any complexity can be applied to field data, however the simpler the 
model the better as long as it can produce a reasonable match. It is a matter of judgement which 
level of complexity is justified. In this case study the field data has some minor fluctuations in 
late-time (group ‘z’) which is the group that controls the location of the boundary in the model. 
To read too much into the exact shape of the field data as it transitions into the boundary 
response is considered to be an over-analysis in this case. The data is not sufficiently clear in this 
group to justify this level of detail in the modelling. For this reason no attempt has been made to 
model the channel boundaries separately for the numerical case (Section 5.3).  

 

Table 3: Analytical PTA results: estimated parameters and 95% confidence limits. 

Weighting 
of groups:  
w, x, y, z 

 k 
[mD] 

s L1 
[m] 

L2 
[m] 

Pi 
[bar a] 

1, 1, 1, 1 estimated value 16.6 0.53 78 78 23.4 
95% confidence limits 16.4 – 16.8 0.46 – 0.60 69 - 88 69 - 88 not given 

1, 1, 30, 10 estimated value 19.5 1.31 36.3 87.3 23.1 
95% confidence limits 19.1 – 19.8 1.21 – 1.41 35.1 – 37.5 86 – 88.6 not given 
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5.5 Isothermal Numerical Simulation 

The analytical models are isothermal by necessity, while the numerical model has the advantage 
of being able to represent the non-isothermal reality of an injection test. Constraining the 
numerical simulation to the isothermal case is of interest for comparison with the analytical 
results. This is achieved by specifying the injectate temperature to be the same as the reservoir 
temperature (172°C). The resulting numerical derivative has a very similar shape to the analytical 
equivalent (Figure 11) and is indistinguishable from the numerical non-isothermal derivative (not 
shown). The estimated parameters are given in Table 4 and differ significantly from the non-
isothermal results (Table 2) only in terms of the skin factor s.  

 

 

 
Figure 11: Log-log derivative plot of isothermal numerical and analytical PTA model responses for optimal 

weighting of observation groups (W=1, 1, 30, 10).  

 

 

 

 

Table 4: Isothermal numerical PTA results: estimated parameters and 95% confidence limits. 

Weighting 
of groups:  
w, x, y, z 

 k 
[mD] 

s L 
[m] 

Pi 
[bar a] 

c 
[1/Pa] 

1, 1, 30, 10 estimated value 15.3 -0.33 64.7 22.82 8.8e-08 
95% confidence 

limits 
15.1 – 15.5 -0.39 - -0.27 64.2 – 65.2 22.81 – 22.83 8.5e-08 – 9.1e-08 
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5.6 Local Minimum in the Objective Function 

In the numerical unweighted case the model is a poor match to the field data. The derivative 
would have flattened well below the level of the field data except for the effect of the boundary 
which pulls the derivative back up again (Figure 9 and 12). The final results were for high 
permeability, positive skin, and a boundary so close to the well that IARF is never reached. 
Figure 12 shows that a match with a similar shape and similar estimated parameters can also be 
obtained with the analytical software (except for skin factor which is higher for the analytical 
case). This is done by simply choosing a different start point for the inversion in parameter 
space, rather than using the one automatically generated by SAPHIRTM. These type of results 
appear to represent a local minimum in the objective function. It is therefore likely that the 
unweighted numerical match could be improved by simply altering the starting point of the 
inversion and avoiding this local minima. However this is not considered to be necessary as 
weighting of some observation groups is required for other reasons (see Section 5.3) and in the 
process this local minima issue is avoided.   

 

 
Figure 12: Analytical and numerical model matches in the local minima of the objective function, giving high 

values for permeability, positive skin and boundaries close to the well.  

 

5.7 Comparison of Numerical and Analytical PTA Results 

Good numerical and analytical matches are obtained for a weighting of groups w, x, y, z with 
weights 1, 1, 30, 10 respectively and the two are directly compared in a derivative plot in Figure 
13 and a history plot in Figure 14. The estimated parameters in each case have narrow 95% 
confidence limits (Tables 2 and 3). The visual quality of the match is very similar and the 
analytical and numerical model results are indistinguishable from each other and from the field 
data in the history plot (Figure 14). In the more sensitive derivative plot the pressure derivative 
reveals very minor differences in the shape of the model results (Figure 13). Both models match 
the intermediate and late time data very well (groups ‘y’ and ‘z’) partly due to weighting of these 
groups. Neither model reproduces the shape of the transition data (group ‘x’) very well, in 
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particular the steepness of the derivative hump. Attempting to reproduce a steeper hump will be 
the focus of future work as this is a common issue with geothermal well tests. One possible 
avenue for this will be an implementation of fractional dimension theory (Chang and Yortsos, 
1990) into the numerical model.  

The results for reservoir permeability k are similar at 15.0 and 19.5 mD (numerical and 
analytical, respectively). With the reservoir thickness interpreted as 940m this gives a 
transmissivity kh of 14100 and 18330 mD.m respectively. There is no independent means by 
which to determine which of the values is the most accurate.  

The numerical result for skin is -2.2 (Table 2) which is significantly lower than the analytical 
value of 1.3 (Table 3). This result is expected as it is known that analytical models overestimate 
the skin factor in geothermal wells as they do not take account of the effect of injecting cold 
water into a hot reservoir (McLean and Zarrouk, 2015c). This effect was identified by McLean 
and Zarrouk (2017) by numerical methods and called the “injectate temperature effect”, and also 
many years previously and independently by Benson and Bodvarsson (1982) by analytical 
methods and called “fluid skin”. The analytical value of s = 1.3 is an overestimate of the skin 
factor and would mean the well was damaged during drilling, which is unlikely as this well was 
drilled without mud and aerated water was used to circulate cuttings out of the well. The 
numerical value of s = -2.2 accounts for the injectate temperature effect and therefore is more 
likely to be a true reflection of the near-wellbore reservoir condition. The negative skin means 
the well has been stimulated and a potential mechanism for this is induced fracturing in the near-
wellbore region due to in situ stress (e.g. tensile fractures, borehole breakouts and petal-
centreline fractures) (Massiot et. al, 2015). The other variable parameters are not independent of 
s in the inversion process, therefore an incorrect value for s affects the estimates of the other 
parameters. For this reason all the numerical results are considered to be more reliable, not just s. 
Numerical simulation of the isothermal case (Section 5.5) produces negligible change to the 
estimated parameters k, L and Pi and significant change to s, as expected (McLean and Zarrouk, 
2017). The skin factor s changes from -2.2 (Table 2) to -0.3 (Table 4) indicating that the 
overestimation of s to be expected by not accounting for the injectate temperature effect is 1.9. 
The analytical value of s is 1.3 (Table 3) which is higher than the equivalent isothermal 
numerical value of -0.3, indicating there may be other factors affecting the determination of s. 
One possibility may be non-Darcy flow effects (Ramey, 1965) near the well, though 
unfortunately any flowrate dependence of s cannot be determined as only the falloff data is 
available for analysis due to a lack of detailed flow data (Section 3.1). The numerical result for 
the distance from the well to the channel boundaries is L = 64m, which is a channel 128m wide. 
The analytical distances the boundary are determined independently which is not considered 
justified as discussed in Section 5.4. However, interestingly, the analytical result is for the two 
distances L1 and L2 to be 36 and 87m which in combination mean a channel 123m wide. So 
regardless of the detail, both methods predict a channel of practically identical width. Any 
potential offset of the well from the centre of the channel cannot be determined from this field 
dataset.  

The 95% confidence limits (Tables 2 and 3) are narrow despite high correlations between some 
parameters, for both the numerical and analytical case. This will be the subject of further 
investigation to ensure the uncertainty is being estimated reliably.  
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Figure 13: Derivative plot: numerical and analytical best fits (weighting of w, x, y, z = 1, 1, 30, 10). 

 

 
Figure 14: History plot: numerical and analytical best fits (weighting = 10). 

 

6. Conclusions 
The linear impermeable boundary variant of the framework for numerical PTA has been 
successfully adapted to model a channel boundary. This numerical channel boundary model 
produces a characteristic pressure derivative response of a 0.4-unit-slope rise.  

The values for well compressibility and volume as estimated by the guidelines in the numerical 
PTA framework required minor adjustment in order to match the early-time wellbore storage 
response. Inclusion of well compressibility c as a variable parameter for the inversion was 
necessary so that the early-time wellbore storage response was not fixed. This removes an 
unwarranted emphasis on this section of early-time field data and allows a better overall match. 
Injectate temperature cannot be a variable parameter due to high correlation to the skin factor.  
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Inversion of the channel model with field data from Well-X produces a good match in both the 
history plot and derivative plot. As reservoir behaviour is of primary interest in this case, 
weighting of the intermediate- and late-time data has been applied to improve this match at the 
expense of the early time match. The resulting match is very good in late time and reasonable in 
early time, though the steep transition from wellbore storage to reservoir behaviour is not 
reproduced.  

The final numerical PTA results are reservoir permeability k = 15 mD, kh = 14100 mD.m, s = -
2.2, L = 64 m and Pi = 22.8 bar with narrow 95% confidence limits. A parallel conventional 
analytical PTA study of the same field data yields results which have a very similar shape in the 
history and derivative plot, however with different estimated parameters. The analytical value for 
skin s = 1.3 is an overestimate due partially to the injectate temperature effect. An isothermal 
numerical simulation indicates the overestimate of s due to ignoring the injectate temperature 
effect to be +1.9. As this overestimate will affect all the other estimated parameters from the 
inversion, the numerical results are considered to be more accurate.  

95% confidence limits can be very narrow for both the numerical and analytical case, despite 
high correlations between some parameters. This will be the subject of further investigation.  
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