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Abstract

Geothermal anomalies of Yellowstone National Park (YNP) 
are identified and quantified using Landsat 5 TM thermal band 
data. Multivariate regression of independent background variables 
that effect thermal emissivity, including elevation, slope, aspect, 
insolation, vegetation, water, soil moisture, and exposed land, 
were utilized in this study to create a comprehensive background 
filter for the raw imagery. Subtracting the multivariate background 
model from raw Landsat 5 TM data accentuates large geothermal 
anomalies such as Grand Prismatic and less thermally evident 
features such as the Old Faithful Geyser while removing sig-
nificant false anomalies from the imagery. Geothermal anomaly 
emittances within YNP were calculated with a range of 40-120 
W/m2. False positives for geothermal activity were reduced in the 
scene, with remaining ones focused on bare earth slope, consistent 
with other studies. A differencing between known geothermal 
pool temperatures and model residual temperatures at 25 sites 
indicates an average difference of 347 K (stdev 12 K), suggesting 
scalability from residual output to corrected temperature detec-
tion. The methodology employed for detecting known geothermal 
anomalies in YNP could be utilized to detect unknown geothermal 
potential in underexplored geothermal regions.

1.	Introduction

All objects on the earth’s surface emit electromagnetic radia-
tion, which can be detected and measured using low-cost remote 
sensing techniques. Problematically, the raw emittance measured 
from satellite imagery includes the response from the target of in-
terest as well as background or intervening features, which results 
in noise that can mask true anomalies. It is critical to differentiate 
signal sources when quantifying a specific thermal feature. In this 
work, we develop a multivariate background emittance model 

that we use as a filter for Landsat TM data across Yellowstone 
National Park (YNP). 

YNP is one of the most geothermally active and well-studied 
locations in the world, allowing us to validate our model against 
established records of geothermal anomalies of varying scale. 
Yellowstone is a large caldera in Wyoming, Montana, and Idaho, 
located at the western extent of the Snake River Plain. The volcano 
that last erupted cataclysmically 640Ka, depositing the >1000 km3 
Lava Creek Tuff, an event that was followed by smaller effusive 
eruptions as recently as 70Ka (Christiansen and Blank, 1972). 
The magmatic system underlying Yellowstone caldera remains 
active, as evidenced by continued passive degassing and ground 
deformation (e.g., Aly and Cochran, 2011). Faults and fractures 
in the crust in YNP provide pathways for water circulation form 
the surface to deep, relatively hot crust (Morgan et al., 1977; 
Bargar, 1978). This hydrothermal circulation manifests itself at 
the surface as geysers, mud pots, hot springs, and fumaroles; there 
are over 10,000 surficial geothermal anomalies within the park 
boundaries, with scales spanning centimeters to 10’s of meters 
and temperatures up to the boiling point of water.

Despite the presence of such significant geothermal anoma-
lies, thermal remote sensing analyses of the features have been 
hampered by noise from background emittance. Previous work by 
Coolbaugh et al. (2006) and Eneva et al. (2006) at YNP attempt 
to mitigate the noise problem in satellite-based remote sensing 
imagery by subtracting heat due to topography, thermal inertia and 
albedo. Similarly, Watson et al. (2008) calculated the geothermal 
emittance anomalies of YNP by correcting for solar and elevation 
effects using a snow covered Landsat 7 ETM+ scene to mask out 
other variables that emit thermal energy. While these approaches 
improve isolation of true positive thermal anomalies in satellite 
data, their success was limited by their a priori selection of a 
limited suite of contributing background variables. Following a 
different approach to noise filtering, Vaughan et al. (2012a and 
2012b) calculated corrected net heat flux at known geothermal 
sites in YNP by subtracting heat from nearby non-geothermal 
areas. While this approach yielded excellent results, the method is 
inherently limited to use in areas of pre-defined, known anomalies 
from which the user can identify targets of interest and appropriate 
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neighboring non-geothermal pixels for subtraction. These limita-
tions are problematic given the impact of geothermal anomalies 
on their surrounding conditions; for instance, elevated geothermal 
emittance can be very damaging to local vegetative health, which, 
in turn, influences overall thermal emittance as measured via 
remote sensing (Mia et al., 2012).

In this work, we evaluate the relative contributions of slope, 
aspect, elevation, vegetation, soil, and water to thermal emittance 
in geothermally inactive areas surrounding YNP to establish co-
efficient ranges appropriate for multivariate analysis. Minimum 
and maximum coefficients for each of the significant background 
variables define the solution bounds used in a Monte Carlo-based 
background filter for thermal anomalies within YNP boundaries. 
By defining coefficient ranges using non-geothermal zones, we 
reduce the risk of overfitting the algorithm for the thermal areas, 
thereby yielding false negatives in the final image. 

2.	Materials and Methods

We focused our study in and around YNP in northwestern 
Wyoming, eastern Idaho and southern Montana (Fig. 1). Training 
zones A through J represent areas similar to those within YNP 
but geothermally cold, as determined using data from the Idaho 
Department of Water Resources and Derkey and Johnson (1995). 
Diverse land conditions, such as steep slopes, vegetated areas and 
barren lands, were included to ensure model accommodation to 
wide range of environmental variability typical of the region. The 
independent variables were evaluated in the training areas in order 
to minimize overfitting of the model to the geothermal anomalies 
present inside YNP.

We used Landsat 5 TM satellite imagery (30 m spatial 
resolution, thermal resampled from 120 m), with imagery from 

September 24, 2011. The selected image did not contain snow 
or cloud cover, and was chosen to be outside of peak vegetation 
conditions; results from this image are consistent with output 
generated in August and October dates in other years. Although 
Landsat 7 ETM+ has 60 m resolution in the thermal infrared bands, 
we did not use this sensor due to technical problems associated 
with it since 2003 (Sobrino et al., 2008). 

We examined elevation, slope, aspect, insolation, vegetation, 
water, soil moisture, and exposed land as independent variables 
to calculate the background emission via multivariate regression. 
The primary datasets used for calculating these derived variables 
were Landsat 5 TM imagery and National Elevation Datasets 
(NED). The Landsat 5 TM data were converted to radiance and 
temperature (for band 6) in ENVI software using standard calibra-
tion parameters (NASA, 2007; Chander et al., 2009). 

Normalized Difference Vegetation Index (NDVI) was used to 
measure vegetation greenness, a proxy for vegetation health and 
plant type from Landsat 5 TM imagery. NDVI values range from 
1 to -1, with higher values representing more greenness. Near 
infrared (NIR) and red bands were used to calculate NDVI using 
the equation (Jensen, 1986):

NDVI = NIR - red
NIR+red

	  (1)

The Normalized Difference Bare Soil Index (NDBSI) uses 
Shortwave Infrared (SWIR) and NIR bands to measure bare soil 
area and it is expressed as (Roy et al., 1997): 

NDBSI = SWIR - NIR
SWIR+NIR

	  (2)

NDWI, or Normalized Difference Water Index (NDWI) is used 
to delineate water features and enhance its presence in remotely 
sensed imagery (McFeeters, 1996). The equation for NDWI is 
given as:

NDWI = green - NIR
green+ NIR

	  (3)

We also calculated the modified-NDWI, which suppresses the 
noise from built-up land, soil and vegetation because of the use of 
SWIR instead of NIR (Xu, 2006). We included both indices at the 
outset of the study rather than making a priori decision regarding 
which would be more useful in the multivariate thermal algorithm; 
variables were evaluated for redundancy and significance before 
being included in the final model.  The equation for modified-
NDWI is given as: 

modifiedNDWI = green - SWIR
green+SWIR

	  (4)

National Elevation Datasets (NED; 10 m spatial resolution) 
were used to calculate slope, aspect, hillshade and insolation in 
ArcGIS.  Slope is the rate of change of elevation with distance, 
ranging from 0 to 90 degrees above horizontal. Aspect, or the 
direction of that the local slope is facing, is recorded as azimuthal 
compass direction. Hillshade is a function of solar azimuth and 
elevation. This study used the metadata associated with the cor-
responding Landsat image to calculate the hillshade for the day 
of the year and time of day the scene was collected. Slope, aspect 
and hillshade were calculated using the algorithms by Burrough 

Figure 1. Map showing training areas (A to J; yellow boxes) around YNP 
(white outline) and test area (green outline) inside YNP. The red dots 
represent known geothermal anomalies. Points within the park boundary 
are from the polygons of R. Hutchinson (unpublished), points in Idaho are 
from Idaho Department of Water Resources (2001), points in Montana are 
from Derkey and Johnson (1995).  Background image from NAIP 2012/13 
Image Services.
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et al. (1998) native to ArcMap 10. Insolation, or solar radiation, 
was calculated using the hemispherical viewshed algorithm 
introduced by Rich et al. (1994) and developed by Fu and Rich 
(2000, 2002); the Area Solar Radiation tool in ArcMap 10 was 
used to calculate the insolation in Watt-hour/meter2 at the time 
of day corresponding to the relevant Landsat image capture. 
Because date- and time-appropriate sun orientation was used in 
both the hillshade and insolation calculations, these variables are 
analogous to one another through they exist on different scales 
and use different units.

We used univariate regression to establish the significance of 
the potential background variables on the total emittance, retaining 
significant variables for use in the multivariate calculation (Fig. 2). 
A p-test with 95% confidence identified background variables that 
do not significantly contribute to the total emittance; variables 
that failed the p-test for more than half of the training areas were 
removed from further evaluation in the study.

Independent variables were evaluated for multicollinearity, or 
variable redundancy. NDWI and modified-NDWI, for instance, are 
similar approaches to measuring vegetation greenness; while those 
terms will clearly exhibit multicollinearity, other relationships 
between independent variables may be less clear. To test for multi-

collinearity, variables were combined into groups for multivariate 
analysis in ArcMap 10. Variable groups were built sequentially, 
adding one variable at a time, with Ordinary Least Squares (OLS) 
used to identify improved coefficient fits. Variance Inflation Factor 
(VIF) values determined from best-fit solutions indicated which 
variables demonstrated multicollinearity (O’Brien, 2007). In 
cases of redundancy, the variable with the highest coefficient of 
determination was preserved while the others were excluded from 
further analysis. NDVI, NDWI, and modified-NDWI tested posi-
tive for redundancy relative to one another, with NDVI retained. 
Similarly, insolation and hillshade were redundant to one another; 
inclusion of hillshade resulted in better model fit, so insolation was 
dropped from further analysis. In both cases of multicollinearity, 
removal of the redundant variable(s) did not have a significant 
effect on the overall coefficient of determination.

The univariate best-fit coefficients in the training zones for the 
remaining variables were used to create upper and lower bounds 
in the multivariate solution for YNP. By establishing coefficient 
bounds in geothermally cold but otherwise consistent zones, we 
restricted the degree to which the multivariate solution can overfit 
the geothermally active park. We did not use any predetermined 
weighting in selecting the coefficient ranges, as that would 

prejudice the model toward one set of land con-
ditions over another. Large, cold water bodies 
were excluded from the final analysis, how-
ever, as they would otherwise force the model 
to preferentially fit to them rather than the tar-
geted terrestrial sites. The multivariate model 
used a Monte Carlo approach to coefficient 
selection within the established bounds. Given 
the size of YNP and the number of iterations 
necessary to converge on a stable solution, 
the multivariate solution was calculated using 
Fortran90 code with openMP for thread-scale 
parallelism. The resulting best-fit solution, 
which describes the background temperature, 
is subtracted from the original raw image to 
leave a residual that highlights the geothermal 
anomalies in YNP (Fig. 3). The residual image 
is converted to emittance from degrees Kelvin 
using the Stefan-Boltzmann equation.

Figure 2. Figure showing the R-squared values corresponding to each background variables. Slope, 
elevation and NDVI have lower R-squared values than rest of the variables. NDBSI and shaded relief 
has the biggest influence on the total emittance as demonstrated by the color.

Figure 3. Close-up of the Sulfur Hills Thermal Area in YNP showing a) the raw Landsat 5 TM, b) multivariate background calculation, and c) residual (raw-
background) images expressed in temperature (K). The blue polygons in the images are mapped geothermal zones by Hutchinson (unpublished). Subtracting 
the background from the raw image significantly highlights the geothermal anomaly relative to the false positive visible on the right side of the raw image. 
Location within YNP denoted on Figure 4; final output for Sulfur Hills in Figure 5e.
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The residual image produced by this method contains signif-
icant low-level background noise in addition to the emphasized 
thermal anomaly. This noise is minimized by removing all 
pixels with values less than 3 standard deviations above the 
average emittance, leaving only large anomalies. This filter 
approach can only be applied in circumstances where there 
are a large number of regular pixels relative to geothermally 
anomalous pixels, such as the park-wide analysis. 

3.	 Results and Discussion

Application of the multivariate background 
model and 3 standard deviation filters results in 
very good agreement between modeled anomalies 
and field-evaluated geothermal anomalies across the 
park (Fig. 4). False anomalies occur in the output, 
mostly concentrated along northeast-trending ridges, 
as well as true anomalies that are not represented 
in the YNP polygon data but have been confirmed 
by Watson et al. (2008). The false anomalies that 
appear in the model output suggest that one of the 
variables may be underfitting the solution in certain 
circumstances, perhaps as a result of complex inter-
play between two or more variables, or that there 
may be a significant variable yet excluded from the 
analysis. Future work in this direction should include 
investigation of rock unit exposures, as they may be 
responsible for locally increased emittance.

The approach yielded particularly good fits with 
individual geothermal features within the anomaly 
polygons of R. Hutchinson (unpublished), avail-
able from the Yellowstone Center for Resources 
GIS geodatabase (Fig. 5). For example, the model 
distinguished between Grand Prismatic Spring and 
Excelsior Geyser Crater in the Midway Geyser 
Basin while minimizing the surrounding runoff 
zones in the polygon. Similarly, the model identi-
fied individual anomalies at the Violet Hot Springs, 
including both spring and mud pot features, and 
various geysers and pools in the Norris Geyser 
Basin. While large hot springs are most readily vis-
ible in the residual imagery, terrestrial anomalies 
with relatively small footprints are also identifiable; 
Old Faithful and several other individual geysers 

are distinguishable from the background in the Upper Geyser 
Basin though it appears cold in the park-scale view (Fig. 6). The 
close-up perspective also shows some park infrastructure, such as 

Figure 4. Residual emittance in YNP showing pixels greater than 3 
standard deviations above the average for the zone. Blue polygons in-
dicate geothermal zones as mapped by R. Hutchinson (unpublished). 
Red arrows indicate false anomalies in the image, while purple arrows 
denote positive identification of true anomalies consistent with ground 
truthing reports by Watson et al. (2008). False positives are preferen-
tially located along northeast-trending ridges. Due to the scale of the 
test zone, presented here in overview, many of the positively identified 
thermal anomalies are not clearly visible in this image; see Figures 5 
and 6 for closer views of anomalies.

Figure 5. Close-up images of residual emittance for several geothermal 
anomalies in YNP. Features highlighted by the background filter model 
include hot spring pools, mud pots, and geysers. The method highlights 
the features within the broader mapped geothermal zones denoted by the 
blue polygons (R. Hutchinson, unpublished). Locations within YNP are 
denoted on Figure 4.
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buildings and parking lots, as positive anomalies just above the 
display threshold (Fig. 6). 

By subtracting background values in order to highlight true 
anomalies this model unavoidably reduces the output temperature 
to degrees in excess of background rather than real temperature. 
Twenty-five field temperature measurements of YNP pools by 
Bergfeld et al. (2011) were compared with spatially coincident 
model output to determine if there was a baseline offset that 
could be applied to the residual model pixels to convert them to 
true temperatures (Table 1). For the imagery presented here, the 
average difference between measured and modeled temperatures 
was 347 K, with a standard deviation of 12 K. Given the reported 
variability of YNP geothermal features over time (e.g., Friedman 
and Norton, 1981; Vaughan et al., 2012a; Savage et al., 2012) and 
signal mixing in coarse Landsat 5 TM 120 m pixels, this is a narrow 
distribution of differences. Evaluation of imagery from other dates 
will be necessary to establish whether this coarse scaling change 

is broadly appropriate or is strongly influenced by intermediate 
diurnal and seasonal effects.

The background subtraction and 3 standard deviation pixel 
filter approaches used in this research pose a challenge for identi-
fying relatively low-temperature thermal anomalies or anomalies 
with spatial footprints well under Landsat 5 TM pixel resolu-
tion. Comparing Figure 3c and Figure 5e, both of Sulfur Hills, 
illustrates the loss of low-grade thermal anomalies during the 3 
standard deviation pixel filter used to minimize the visual impact 
of residual noise and low-confidence anomaly pixels. Further 
work will clarify the lower temperature and spatial limits of use 
for this model.

The ability of the method to identify relatively small spatial 
features despite the coarse pixel size available for thermal data 
through Landsat 5 TM suggests that the approach is worth in-
vestigating at higher resolution scales, such as the 1m resolution 
Forward Looking Infrared (FLIR) surveys used by Jaworowski 
et al. (2010). In their work, Jaworowski et al. (2010) identified 
significant relationships between park infrastructure and geo-
thermal anomalies, with road construction resulting in diverted 
hydrothermal runoff and elevated temperatures on pavement. This 
interaction, located outside of mapped geothermal polygons, is 
also visible in our results as an anomaly located directly northeast 
of the Overpass Group (Fig. 6). Their high-resolution imagery was 
able to capture features below the visible threshold in this study, 
including the Circle Pool group approximately 500 m southeast 
of Grand Prismatic Spring. 

In contrast to the approach of Vaughan et al. (2012a and 
2012b), which was designed for monitoring changes in YNP 
heat flux, this method does not require a priori knowledge of 
geothermal anomalies and immediately proximal quiescent areas. 
As such, it can be more rapidly deployed as an exploratory tool 
over large areas. As presented, application of our proposed model 

Table 1. Comparison points between measured field temperatures (Berfeld 
et al., 2011) and residual temperature from this model. This table indi-
cates an average baseline temperature of 347 K offsetting residual from 
measured temperatures in the processed image. Note: field measurements 
occurred during Augusts and Septembers during the years 2003-2009 and 
do not indicate  fluctuations that may have occurred during that period.

Location Easting Northing
Field  
Temp  
(K)

Residual  
Temp  
(K)

Difference  
(K)

Back Basin 2 522963 4952193 340.4 5.1 335.3

Back Basin 4 523011 4952171 360.4 7.5 352.9

Bear Creek 558816 4932859 365.3 10.0 355.3

Behind Congress 523655 4952727 365.7 7.5 358.2

Black Pit 523588 4952139 355.3 1.7 353.6

Black Sands 1 511542 4923259 363 10.2 352.8

Black Sands 2 511628 4923190 349.1 3.1 346.0

Chocolate Pots 520496 4950780 325.5 2.6 322.9

Dishwater 523384 4952086 362.4 5.4 357.0

Green Dragon 523196 4951898 361.6 7.5 354.1

Hot Springs Basin 2 558553 4953761 364.9 2.0 362.9

Hot Springs Basin 5 558925 4955398 349.9 5.0 344.9

Hot Springs Basin 8 559347 4954788 341.1 8.2 332.9

Hundred Springs 
Plain 523113 4953330 362.1 3.5 358.6

NR Gibbon R1 523658 4954007 357 0.5 356.5

NR Gibbon R2 523680 4954101 345.8 4.5 341.3

Obsidian Pool 544530 4939794 362.2 5.2 357.0

Potts Basin 1 533421 4919761 341.8 1.0 340.8

Potts Basin 2 533505 4919689 360.5 -0.3 360.8

Potts Basin 3 533504 4919547 318.3 -5.0 323.3

Smokejumper 1 503793 4917530 358 12.2 345.8

Steam Valve 523494 4952561 341.8 2.4 339.4

Sulphur Caldron 1 544992 4941758 341.9 3.7 338.2

Terrace Springs 512184 4944102 336.3 10.0 326.3

W Nymph Lake  
Thermal Area 1 520335 4954609 355 4.9 350.1

Figure 6. Upper Geyser Basin of YNP. Though the anomalies are indistinct 
when viewed at the park-wide scale in Figure 4, closer inspection of the 
Upper Geyser Basin reveals that the method discussed here identifies 
individual geysers within the group, including Old Faithful. Orange dots 
south of the Old Faithful Group correspond to park infrastructure, includ-
ing buildings and parking lots. Blue polygons indicate geothermal zones 
as mapped by R. Hutchinson (unpublished).
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requires identification of similar zones that are geothermally quiet 
for model coefficient training. This may be sidestepped, however, 
by processing large areas in which geothermally anomalous pixels 
make up a very small fraction of the total image, relaxing coeffi-
cient bounds, and allowing more iterations to achieve a convergent 
solution. In such an untrained case, the overwhelming number of 
cold pixels should prevent overfitting of the background model to 
the actual geothermal anomalies; while conceptually sound, the 
untrained approach should be evaluated prior to extensive use.

Previous work by Vaughan et al. (2012a and 2012b) and 
Watson et al. (2008) use winter scenes in order to minimize the 
effects of intervening background emittance. While both clearly 
show the merits of this approach, their models are thereby limited 
in the regions in which they can be applied. While the multivariate 
background subtraction method presented here requires that more 
variables be constrained, it is accordingly more appropriate for 
use in areas without reliable winter snow accumulation.

4.	Conclusions

The multivariate background subtraction method used in this 
study identified geothermal anomalies in YNP at multiple scales, 
from individual geysers to large hot springs and extensive geother-
mal anomaly clusters. This study is unique in that it successfully 
used multivariate regression analysis of Landsat TM 5 thermal 
infrared data to identify geothermal anomalies by developing a 
filter based on thorough explanation of background variables 
during snow-free conditions. By moving away from more tradi-
tional snow-filtering approaches, this model can be trained for 
use in potential geothermal areas in areas without regular snow 
accumulation. Future work will involve testing the inclusion of a 
geologic variable in the multivariate regression and investigation 
of complex relationships between independent variables that may 
contribute to false anomaly detection along northeast-trending 
ridges. The model will also be tested in geothermally active regions 
outside of YNP to evaluate robustness in different climate zones, 
with a focus on minimizing time required for coefficient training. 
Results from the current model application in YNP suggest that 
it is a low-cost, solution for geothermal anomaly detection over 
large areas for both large- and small-scale features.
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