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Introduction

A remarkable recent result from seismic interferometry allows 
one to create virtual seismic receivers (Curtis et al., 2009). By 
recording an original earthquake on an array of seismic receivers, 
one can estimate seismograms from other events as if they were 
recorded at the original event’s location. This estimation occurs 
by signal processing the other events’ seismic records from the 
array in conjunction with the original event’s records.

Here, we present some preliminary efforts attempting to use 
Curtis et al.’s result to improve estimates of hypocentral locations 
in microseismic clouds.

Theory
Seismic Interferometry

For our purposes, the key expression from Curtis et al. (2009) 
is their equation (SI-16) from the Supplementary Information, 
which we reproduce here:
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This (complex valued) expression is shown in the Fourier 
domain – hence the multiplications are convolutions – and the 
explicit dependence on frequency has been suppressed in the 
expression. The geometry is as displayed in Figure 1 with the 
boundary integral due to the use of the Green/Gauss theorem – 
in practice the integral is approximated by a sum over discrete 
locations. The vectors x1 and x2 are the locations of two distinct 
earthquakes, while the x’ are the locations of the array receivers. 
The homogenous Green’s function Gh

im has a source at x1 and is 
received at location x2 – it is a linear combination of the causal and 
the conjugated a-causal Green’s functions, and it is symmetric with 

respect to source and receiver by reciprocity. The repeated index 
summation convention is used. The constant K absorbs all of the 
Cijkl elasticity constants of the full expression, and is different for 
different geometries of earthquakes (Curtis et al., 2009) – we use 
it here as a mere constant of proportionality. Spatial gradients in 
the p direction are denoted ∂p. M1

mq and M2
ip denote the moment 

tensors for events number 1 and 2 respectively. The iω in the 
right-hand side is a temporal derivative in the Fourier Domain 
(transform sign convention dependent) probably being used here 
as an approximation of spatial gradients in this wave equation 
based theory. The superscripted star denotes complex conjugation, 
such that un u*

n in the RHS is a cross-correlation between the two 
displacement seismograms.

The full expression in Curtis et al. (2009) – for which Equation 
1 is an approximation – requires unrealistic (or at the very least, 
rare in the real world) strain-gauge “dipole” seismometers. Equa-
tion 1 is the more practical displacement “monopole” seismometer 
expression, which allows arbitrary moment-tensor events to be 
used as either a source or a virtual receiver event. To keep the 
numerical experiments simple and appropriate for our first-arrival 
estimates, we choose to restrict our attention to explosive sources 
and virtual receivers with simple (spherical) moment tensor rep-
resentations. Hence, after substituting Kronecker deltas for the 
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Figure 1. (From Curtis, et al. 2009). a) The standard interferometry geom-
etry. Seismic events are depicted as red stars, receivers as blue triangles. 
b) The virtual receiver geometry. An array of receivers (blue triangles) re-
ceives seismograms from 2 distinct seismic events (red stars). The Green’s 
function between the events can be estimated via Equation 1.
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moment tensors appropriately (i.e. M1
mq=δmq and M2

ip=δip) and 
a little algebra using the definition of moment tensors, we find:

∂iu
h
i x2 | x1( ) =

iKω un ′x | x2( )
S∫ un

* ′x | x1( )d ′x 	 (2)

In words, Equation 2 states that the homogenous volumetric 
strain seismogram (i.e. proportional to the seismogram recorded 
by a hydrophone) propagating from x1 to x2 can be estimated 
from observing the pressure seismograms from both earthquakes 
using a summation over the entire set of receiver stations as an 
approximation of the full surface integral. 

In essence, we have created a virtual hydrophone receiver at 
position x2!

An interesting feature of Equation 2 (or indeed, Equation 1), 
is that the math places no restrictions on whether un(x′|x2) occurs 
before or after un(x′|x1) in time. As long as we have both sets 
of seismograms recorded, we can employ the equation. For our 
present purposes, this means that the choice of the best located 
(or “nicest” moment tensor) virtual receiver(s) event(s) can be 
made or adjusted at any time after the activity of a microseismic 
swarm. There are other (related) important consequences of this 
order-blind feature that we hope to flesh out with future work.

Improving the Microseismic Locations
We focus on the Double Difference (DD) location algorithm of 

Waldhauser and Ellsworth (2000), and its variants (e.g. Zhang and 
Thurber, 2003; or the HypoCC code of Foulger and Julian, 2013). 
The basic technique minimizes traveltime residuals of the form:

drk
ij = tk

i − tk
j( )obs − tki − tkj( )cal 	 (3)

In this expression, dr is a DD residual, the t’s are travel times, 
the superscripted indices refer to the earthquake events, the sub-
scripted index refers to the recording station, and the superscripted 
“obs” and “cal” refer to the measured observation and the velocity 
model derived calculated values respectively. The actual residual 
being minimized by an inversion procedure is the sum over all 
stations of Equation 3.

Notice that the DD residual is composed of two conceptually 
different parts. The “obs” component relates to the difference in 
travel time between two events observed from the same instrument. 
This is the primary observation of the method, and contains all of 
the information about the relative hypocentral locations, source 
times, and the velocity field encountered by the actual source-re-
ceiver ray-paths. The “cal” component is composed of differences 
in travel times due to the assumed or estimated velocity models. 

Virtual receivers can help improve inversions based on such 
residuals in several ways. By using Equations 1 or 2 to increase 
the effective number of arrival time observations, the statistics in 
the DD inversion are improved. By placing virtual receivers closer 
to the swarm of microseismicity than possible with real receivers, 
the effects of inaccurate velocity models can be ameliorated. The 
virtual receivers’ close-in geometry also allows for better ray-path 
coverage for tomographic estimates –improving velocity model 
estimates for the rockmass surrounding the swarm, hence allowing 
the possibility of iterative improvement in the absolute locations. 
There are probably other reasons that will become apparent as this 
new technique matures.

Simulations

We simulate a microseismic cluster (Figure 2) as being located 
on a planar fault with attitude N45W 45NE, passing through the 
point (6000,5000,1000) meters. The (right handed) coordinate 
system is shown and has its x component increasing due north, its 
y component increasing due east, and its z component increasing 
downwards. The receiver array is arranged at 30-degree incre-
ments around a circle on the surface with radius 2500 meters, and 
its center located at (5000,5000,0). Note that the cluster is offset 
with respect to the center of the receiver circle. There are 25 (blue) 
microseismic cluster events distributed on the fault plane, with 
the center event (red) designated as the “Virtual Receiver” (VR) 
– which plays the role of x2 in equations 1 or 2. The numerical 
model extends 10x10x2 km as shown. There is a free surface at 
z=0, and all other boundary surfaces use the non-reflecting bound-
ary conditions implemented in the modeling code.

We use the parallel fully elastic 3D finite difference Wave 
Propagation Program from Lawrence Livermore (WPP; e.g. 
Petersson and Sjögreen, 2011) for our wavefield simulator. The 
grid spacing is 20 meters in all three directions. We use a P speed 
of 2500 m/s, an S speed of 1500 m/s, and a mass density of 2600 
kg/m3 throughout the entire volume. After trial and error, we use 
their predefined source-time-function called “Smoothwave” – a 7th 
order polynomial in time with reasonable spectral behavior – as 
producing solutions meeting the stability criteria of their simulator. 
(Triangular source-time-functions have too broad a spectrum for 
stable solutions.) WPP allows one to record seismograms from 
any position in the model including in the interior, so we can 
compare the seismograms estimated via equation 1 with those 
directly computed by WPP.

Model run-times for the 3-second seismograms we gener-
ated were on the order of 5 minutes per simulation on a 24 core 
(hyperthreaded) machine, and there were 25 simulations required 
(one per aftershock) to generate the full suite of seismograms.

Results
Earth Surface Array Only

Shown in Figure 3 are estimated seismograms formed via 
Equation 2 at location VR compared with “true” seismograms at 
VR (available from the WPP code). The only x´ contributions to 
the Equation 2 approximation come from the model “physical” 
array (the green “R” locations in Figure 2). All seismograms 
are displayed for 1 second’s duration even though three to four 
seconds were computed. 

From experience using other source-time-functions, we infer 
that the high frequencies evident in some of the red seismograms are 
an indicator of incipient numerical instability in the WPP solution.

Figure 2. Model Geometry. The event cloud is dipping away from you 
towards the NE, and the entire model domain is displayed.
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By examining the full suite of seismogram estimates, we infer 
that the first minimum in the Equation 1 estimated seismogram 
is a good “pick” for first arrival times – in a fashion not unlike 
zero-phase arrival times.

Full Surface Integral Approximation
The integral appearing in Equations 2 or 3 is meant to be a 

fully continuous surface integral over the entire bounding surface 
of the volume of interest. However, in real-world applications of 
the theory we are only able to approximate that integral via a dis-
crete sum over our physical receivers. Such receiver geometries, 
because of obvious operational constraints for seismic surveys, 
are unlikely to be reasonable geometric approximations of the 
full surface integral. 

To investigate how much of an improvement is available from 
a better surface integral approximation, we recorded seismograms 
via WPP from locations arrayed on a 1km grid over the bound-
ing surface (Figure 4). The resulting Equation 2 estimate of the 
seismogram corresponding to that displayed in Figure 3 is shown 
in Figure 5. Encouragingly, the quality of the virtual receiver es-
timates formed via the Figure 2 array is quite comparable to the 
quality from those from the Figure 4 array. Once again we see 
that the (zero-phase style) deepest minimum of the estimate is a 

reasonable “pick” for the first arrival, and 
indeed this is visually confirmed across all 
of the seismograms from all of the events 
on the modelled fault plane.

Stationary Phase Stacking
The surface integrals in the form of 

Equations 1 or 2 stack point-wise seis-
mograms with a wide variety of phase 
angles (e.g. Schuster, 2009). From purely 
geometric considerations, those physical 
receivers a small angle away from the 
source-to-virtual-receiver ray should have 
phases that interfere constructively, while 
those physical receivers from a larger angle 

away from that ray should interfere destructively. Obviously, 
this interference is wavelength dependent. Figure 6 shows the 
geometry.

It is apparent from examination of the geometry in Figure 6 
that the full surface integrals in Equations 1 or 2 are not necessary 
to construct an asymptotic approximation of the waveform. Only 
those ray-paths “close” in some (wavelength dependent) angular 
sense to the source-to-VR ray-path stack constructively. Accord-
ingly, we now numerically investigate first-arrival-time error 
statistics as a function of angle from the source-to-VR ray-path.

Because we have available all of the seismograms recorded 
at the locations in Figure 4, we can compute Equation 2 stacks 
only including seismograms a specified angle from the source-VR 
ray-path. Figure 7 summarizes the resulting arrival time “picking 
error” statistics. The “picking error” is defined to be the arrival 

time of the deepest minimum in the Equa-
tion 2 stack minus the theoretical arrival 
time computed from the known distances 
and velocity for each of the blue micro-
seismic events.

The y axis is arrival time error in sec-
onds. The x axis is the angle in degrees 
from the source-VR rays up to which we 
included seismograms from the physical 
receiver locations of Figure 4. Angles 

Figure 3. An example of Equation 2 in action. Plotted on the right is the location (in red) of an example 
aftershock being analysed as if being recorded at the location VR. Plotted on the left are two seismo-
grams, on a horizontal axis in units of seconds, and a vertical axis in (nondimensional) volumetric strain. 
The seismogram in red is the actual “recorded” seismogram found by retrieving the results at that loca-
tion from the simulation program WPP. The seismogram in blue is estimated for location via equation 1 
from the surface seismograms recorded at the green “R” locations of Figure 2. Also shown is a red bar at 
the theoretical time of the P arrival (known from the simple velocity structure) as well as a green bar at 
the S arrival time. The amplitude mismatch between the two seismograms is attributable to the incorrect 
value of K=1 in Equation 2.

Figure 4. Summing over these locations forms a better approximation to 
the Equation 2 surface integral. Each receiver is on a 1km grid on all of the 
boundaries of the original volume displayed in Figure 2.

Figure 5. Everything is the same as in Figure 3 except that the blue seismogram is estimated from a bet-
ter approximation of the full surface integral of Equation 2. Recording seismograms at discrete gridded 
locations shown in Figure 4 and summing the results form this better approximation.

Figure 6. The red starburst is the microseismic source event. The blue tri-
angle is the virtual receiver event connected to the source event by a blue 
ray-path. The thin black line is the leading edge of the propagating wave. 
The other blue lines shown below are ray-paths to physical receivers, 
with their corresponding leading edges under the action of Equations 1 or 
2 shown by black lines. The dotted lines from those leading edges back 
to the source-VR ray-path show the projections of the physical receiver 
arrivals. During the stacking operation implicit in Equations 1 or 2, small 
angles away from the source-VR path interfere constructively, while larger 
angles interfere destructively. Such constructively interfering wave phe-
nomena are known as “Stationary Phases” in asymptotics.
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displayed as 0 and 90 degrees are special cases, corresponding 
to the “R” locations of Figure 2 and the full surface integral 
respectively. Box and whisker plots summarize the arrival time 
errors for each case. The red central line in each box is the me-
dian value of the arrival time errors collected from all non-VR 
sources in Figure 2. The width of the notches on each box are 
95% confidence intervals for those median arrival time errors, 
formed via a bootstrap procedure of 10,000 samples-with-
replacements. The ends of the boxes show the limits of the inner 
(2nd and 3rd) quartiles. The whiskers shown delimit 1.5 times 
the inner quartile range, while the flyers are plotted as crosses 
outside the whiskers.

There are several things noteworthy in Figure 7: Firstly, the 
“R” location array arrival time errors have a median of about 
20 msec., which corresponds to a median raw location error of 
about 50 meters from that geometry using this technique with a 
single virtual receiver. Obviously, incorporating multiple virtual 
receivers into a relocation effort could improve that raw error by 
averaging out the arrival time error fluctuations. Secondly, one 
explanation for the trend observed in the median results from 20 
to 60 degrees is that more physical receivers give better count-
ing statistics in our Equation 2 stack. That is consistent with 
the tight, low-median errors found for the full surface integral 
result (plotted at 90 degrees in the figure). Thirdly, the 20 to 60 
degree median errors are all positive, implying that the stack 
and this “deepest minimum” picking strategy appears to produce 
events that arrive later than they should. We currently have no 
explanation for this observation. Fourthly, there are some very 
bad outliers evident in our method, with arrival time errors on 
the order of 150 msec. or so. We have no explanation for this 
observation either. We speculate that there are potentially some 
numerical instabilities still found in some of the solutions which 
contaminate our statistics. 

Future Work

We currently expect to perform the following tasks in the 
near-term future.

•	 Integrate one of the HypoDD (Waldhauser and Ellsworth, 
2000), the TomoDD (Zhang and Thurber, 2003), and/or the 
HypoCC (Foulger and Julian, 2013) relocation codes into 
our efforts. This will enable us to actually see the effects 
of placing virtual receivers into the relocation algorithms.

•	 Put in a realistic velocity structure (perhaps along with 
topography) and investigate its effects on the estimated 
waveforms. 

•	 Because of the “clean” nature of our numerical experiments, 
we haven’t yet explored any of the effects of filtering, or 
any other signal processing techniques. This needs to be 
investigated.

•	 Investigate Equation 1 for estimating displacement seismo-
grams rather than pressure seismograms since our target 
applications are land based, and we are unlikely to encounter 
pure explosive sources.

We hope to have accomplished the tasks higher up in the list 
by the time of the meeting, and will report on the new results at 
the meeting.

We also intend to deploy these techniques against real-world 
data – either in an EGS Geothermal situation, an earthquake after-
shock scenario, and/or a shale gas hydraulic fracturing scenario. 
We are actively seeking partners for this activity. The EGS and 
shale gas applications of microseismic monitoring are heavily 
influenced by the quality of the hypocentric relocations, and are 
the major driving force behind our push towards deploying seismic 
interferometry in these kinds of problems.
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