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ABSTRACT

Geothermal, solar and wind are all clean, renewable energies 
with a huge amount of resources and a great potential of elec-
tricity generation. The unfortunate fact is that the total capacity 
installed of geothermal electricity is left behind solar and wind. 
In this paper, attempt has been made to find the essential reasons 
to cause the above problem and to look for the solutions. Cost, 
payback time, size of power generation, construction time, re-
source capacity, characteristics of resource, and other factors were 
used to compare geothermal, solar, and wind power generation 
systems. Furthermore, historical data from geothermal, solar, 
and wind industries were collected and analyzed. Suggestions 
have been proposed for geothermal industry to catch up solar 
and wind industries.

Introduction

Renewable energy sources have grown to supply an estimated 
16.7% of the total global energy consumption in 2010. Of this 
total, modern renewable energy (wind, solar, geothermal, etc.) 
accounted for an estimated 8.2%, a share that has increased in 
recent years (Renewables 2012: Global Status Report).

It is known that geothermal energy has many advantages 
compared with solar and wind systems. These advantages in-
clude weather proof, base load, great stability, and high thermal 
efficiency. The total installed capacity of geothermal electricity, 
however, is much less than solar and wind. The power of the total 
solar PVs manufactured by China in the last five years were equal 
to the total geothermal power installed in the entire world in the 
last one hundred years.

As summarized in Renewables 2012: Global Status Report, re-
newables accounted for almost half of the estimated 208 gigawatts 
(GW) of electric capacity added globally during 2011. Wind and 
solar photovoltaics (PV) accounted for almost 40% and 30% of 
new renewable capacity, respectively, followed by hydro-power 
(nearly 25%). By the end of 2011, total renewable power capacity 

worldwide exceeded 1,360 GW, up 8% over 2010; renewables 
comprised more than 25% of total global power-generating capac-
ity (estimated at 5,360 GW in 2011) and supplied an estimated 
20.3% of global electricity. Non-hydropower renewables exceeded 
390 GW, a 24% capacity increase over 2010. Unfortunately, the 
contribution of geothermal power is very small.

Not only do future energy technologies need to be clean 
and renewable, but they also need to be robust, especially in 
some developing countries such as China. Recently the heavy 
fog enveloped a large swathe of East and Central China was an 
example. There was neither sunshine (no solar energy) nor wind 
(no wind turbine rotating). Beijing was hit 4 times by heavy haze 
and fog within one month in January 2013. Hundreds of flights 
were cancelled and highways were closed. Beijing meteorologi-
cal observatory issued a yellow alert (the highest level alert) for 
heavy fog on January 22, 2013.

In this study, cost, payback time, capacity factor, size of power 
generation, construction time, resource capacity, characteristics 
of resource, social impact, and other factors were compared for 
geothermal, solar, and wind power generation systems. Historical 
data from geothermal, solar, and wind industries were collected 
and analyzed. Possible directions have been proposed to speed up 
geothermal power growth. Note that only geothermal electricity 
generation was considered and direct use of geothermal energy 
was not included in this paper.

Comparison of Resources, Installed Power,  
and Capacity Increase

The resources, installed capacity, and its increase in the last 
three years for PV, wind, hydro and geothermal energies are listed 
in Table 1. Note that the resources of the four energy types from 
different references are very different. According to GEA, the total 
geothermal power installed in world was about 11.2 GW until 
May 2012 (also see Clean Energy, v.6, p. 72, 2013). According 
to WEA (2000), geothermal has the largest resources among the 
four types of renewable energies.
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Table 1. Comparison of Resources, installed power and increase in last 
three years (2009-2011).

Energy Resource 
(TW)

Resource
(TW)

Installed 
(GW)

Increase 
(GW)

PV 6500① 49.9⑥ 70③ 47.0③

Wind 1700① 20.3 240③ 79.0③

Hydro 15955④ 1.6 970③(1010)⑤ 55.0③

Geoth 67⑦ 158.5 11.2 0.30

①Jacobson (2009)	 ⑤Lucky (2012)
②Chamorro, et al. (2012)	 ⑥WEA (2000)
③REN21 Report (2012) 	 ⑦Stefansson (2005)
④Kenny, et al. (2010)

Figure 1 shows the modeled world wind speeds at 100 meter. 
The resource of all wind worldwide was about 1700 TW and that 
over land in high-wind areas outside Antarctica was about 70-170 
TW reported by Jacobson (2009). Note that the predicted world 
power demand in 2030 would be 16.9 TW.

The modeled solar downward radiation in the world is shown 
in Figure 2. The global average radiation was about 193 W/m2 
and that over land was around 185 W/m2. The resource of all PV 
worldwide was about 6500 TW and that over land in high-solar 
locations was about 340 TW, as reported by Jacobson (2009).

Figure 3 shows the distribution of world average heat flow rate 
(Figure 3a) and the location of world geothermal power plants 
(Figure 3b). One can see that the two maps match very well, that is, 
the areas with the highest heat flow rates have the most geothermal 

Figure 1. Modeled world Wind speeds at 100 meter.

Figure 2. Modeled world Surface radiation (W/m2) (global average: 193; 
land: 185).

Figure 3. Distribution of world heat flow rate and geothermal power 
plants.

(a) Distribution of world heat flow rate (http://geophysics.ou.edu/geome-
chanics/notes/heatflow/global_heat_flow.htm) average: 0.06 W/m2

(b) Location of world geothermal power plants.
(source: thinkgeoenergy.com)

	 (a) Resource, installed power and increase	 (b) Resource (Jacobson , 2009)	 (c) Resource (WEA)

http://geophysics.ou.edu/geomechanics/notes/heatflow/global_heat_flow.htm
http://geophysics.ou.edu/geomechanics/notes/heatflow/global_heat_flow.htm
http://thinkgeoenergy.com
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power plants. The geothermal resource worldwide was about 67 
TW (Stefansson, 2005).

The comparison of resources, installed capacity and the in-
crease of power in the last three year is plotted in Figure 4.

The change of the installed global power capacity with time 
for geothermal, PV, and wind is shown in Figure 5. One can see 
that PV’s power change rate was the maximum, followed by 
wind power. The above trend can also be seen in Figure 6, which 
demonstrates the average annual growth rates of renewable energy 
capacity during the period of 2006–2011.  

Note that the average annual growth rate 
of geothermal power was about 2% while that 
of PV was about 58% during the same period 
and up to 74% in 2011 only.

Comparison of Cost, Efficiency,  
and Environmental Impacts

The cost, payback time, and construction 
time for different energy types are listed in 
Table 2. The data are also plotted in Figure 7. 
The cost of geothermal energy is very close 

to wind energy but much less than PV. Compared with wind and 
PV, the main disadvantages of geothermal energy may be the long 
payback time and the construction period (Tc).

Table 2. Comparison of cost, payback time, and construction period 
(Kenny, et al, 2010).

Cost
(US/kWh)

Payback
 (year)

Construction
(year)

PV $0.24 1-2.7 0.3~0.5

Wind $0.07 0.4-1.4 <1

Hydro $0.05 11.8(small)
0.5  (large)

1
10~20

Geoth $0.07 5.7 3~5

Coal $0.04 3.18 1~3

Gas $0.05 7 2~3

	 (d) Installed power	 (e) Power increase in last three years
Figure 4. Resources, installed capacity and the increase in the last three years.

Figure 5. Comparison of installed global capacity for individual energy 
types.

Figure 6. Average annual growth rates of renewable energy capacity, 
2006–2011 (REN 21, 2012).

(a) All Financial

(b) Cost
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In addition to cost, parameters like capacity factor (CF), 
efficiency, and environmental impacts for individual energy gen-
eration technology are also important factors that affect the growth. 
These parameters are listed in Table 3 and plotted in Figure 8.

Geothermal power has the highest capacity factor, over 90% 
in many cases, as listed in Table 3. The average value of the 
capacity factor of PV is about 14% and that of wind is around 
25%. Considering this, the energy generated per year may be 

Figure 7. Comparison of cost, initial investment, payback time, and con-
struction period.

(c) Payback Time

(d) Construction Period

Table 3. Capacity factor, efficiency, and environmental impacts (Evan, 
2009).

CF(%) Efficiency(%) CO2
① Water② Land③

PV 8-20 4-22 90 10 28-64

Wind 20-30 24-54 25 1 72

Hydro 20-70 >90 41 36 750

Geoth 90+ 10-20 170 12-300 18-74

Coal 32-45 1004 78

Gas 45-53 543 78
①	Average greenhouse gas emissions expressed as CO2 equivalent for indi-

vidual energy generation technologies: CO2 equivalent g/kWh
②	Water consumption in kg/kWh of electricity generation
③	Units: km2/TWh

Figure 8. Capacity factor, efficiency, and environmental impacts.

	 (a) All financial	 (b) Capacity factor	 (c) Efficiency

	 (d) CO2: g /kWh	 (d) Water: kg/kWh of electricity generation	 (e) Land: in the units of km2/TWh

Figure 9. Comparison of generated energy for individual energy type.
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more important than the power installed. The amount of energy 
generated per year was calculated using the power installed listed 
in Table 1 and the capacity factor from Table 3 and the results are 
plotted in Figure 9. The energy generated by geothermal was more 
or close to PV after considering the capacity factor.

One can see from Table 3 that the renewable energies all have 
the problem of significant footprint (Figures 10-12), occupying 
a large amount of land. 

Geothermal power has the largest consumption of water 
because of the need of cooling. However the water consumption 
by geothermal power could be reduced remarkably by using new 
cooling technologies.

Comparison of Social Impacts  
and Government Barriers

Social impact of renewable energies is also an important factor 
to affect the growth rate, even the existence in some areas or com-
munities.  Table 4 lists the social impacts (Evans, et al, 2009) and 
the government barriers (mostly the infrastructure system). Rela-
tively, PV and wind have minor social impacts. The main social 
impact of geothermal may be seismic events, which could be very 
serious in some cases (Majer, et al, 2008). Except hydro-power, the 
other renewable energies may all face the problem of integrating 
and improving the grid and other infrastructure systems.

Table 4. Qualitative social impact assessment.

Energy Impact Gov. Barriers

PV Toxins: Minor-major
Visual: Minor

Infrastructure (grid) need 
to be improved

Wind
Bird strike: Minor
Noise: Minor
Visual: Minor

Infrastructure (grid) need 
to be improved

Hydro
Displacement: Minor-major
Agricultural: Minor-major
River Damage: Minor-major

No barriers and grid 
problem

Geothermal

Seismic: Minor-major
Odour: Minor
Pollution: Minor-major
Noise: Minor

Infrastructure (grid) 
depends on location

Unit Power Size and Modularization

Do the size of a power unit and the ability of modularization 
affect the growth of a renewable energy? It is difficult to answer for 
the power unit size but the answer to the effect of modularization 
is yes. The possible, commercially available minimum unit power 
size, the ability of modularization, and the scalability of the indi-
vidual renewable energy are listed in Table 5. Also demonstrated in 
Table 5 is the difficulty to assess the resources of renewable ener-
gies. It is known that PV power is highly modularized, followed 
by wind power. PV also has the smallest commercially available 
minimum power units. Note that PV power had an annual growth 
rate of 74% in 2011 only (REN21, 2012). On the other hand, geo-
thermal has the largest commercially available minimum power 
units. Geothermal power had a less than 1% growth rate in 2011, 
only 2% in a five-year period from end-2006 to 2011 (REN21, 

Figure 10. Solar footprints.  
(cncmrn.com/channels/energy/20100929/365527.html)

Figure 11. Wind footprints (afdata.cn/html/hygz/nyky /20090730/8420.
html; ewindpower.cn/news/show-htm-itemid-2482.html).

Figure 12. Geothermal footprints.    
(hb114.cc/news/hydt/20090807103400.htm).

http://cncmrn.com/channels/energy/20100929/365527.html
http://www.afdata.cn/html/hygz/nyky/20090730/8420.html
http://www.afdata.cn/html/hygz/nyky/20090730/8420.html
http://ewindpower.cn/news/show-htm-itemid-2482.html
http://hb114.cc/news/hydt/20090807103400.htm
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2012). It is difficult for geothermal power to be modularized. 
The fact is that almost each geothermal power plant is different. 

Having reliable resources definitions and assessment are 
equally important for the geothermal energy sector as it is for the 
oil and gas industry (Bertani, 2005). However, it is extremely dif-
ficult to assess the resource accurately and reliably if comparing 
with solar and wind energies.  

Table 5. Unit size and the ability of modularization of renewable energies.

Unit size Modular
ization Scalability Assessment

PV 1 W High High Easy 
Wind 1 KW High High Easy

Hydro 1 KW Middle High Easy- 
difficult

Geothermal >70 KW Low High difficult

According to the above data and analysis, the advantages and 
disadvantages of individual renewable energy are summarized 
in Table 6. 

Table 6. Advantages and disadvantages of individual energies.

Tech. Advantages Disadvantages

PV

Easy to assess resource
Easy to modularize
Easy to install
Low social impact
Easy to scale up
Short construction period

Low efficiency
High cost
Low capacity factor
Not weather proof
High land use

Wind

Low cost 
Easy to assess resource
Easy to modularize
Easy to install
Low-medium social impact
Easy to scale up
Short construction period

Low capacity factor
Not weather proof
High land use

Hydro
High efficiency
Low cost
High capacity factor

High initial investment
Long construction time
Long payback time

Geothermal

Medium-high efficiency
High capacity factor
Low to medium cost
Weather proof

High initial investment
Long payback time 
Long construction time
Tough to assess resource
Tough to modularize

One can see that geothermal energy has many serious disadvan-
tages in terms of current commercially available technologies 
although it has a lot of advantages.

The main disadvantage of PV and wind may be the capacity 
factor affected by weather, which causes serious stability problem 
and high risk to the electricity grid. As reported by Beckwith 
(2012): sometimes the wind will go from several thousand mega-
watts to zero in less than a minute. And gas plants cannot come on 
within a minute. Solar power plants may have similar problems. 
Geothermal power, on the other hand, is very stable.

Evans, et al. (2009) ranked the renewable energies in terms 
of sustainability (see Table 7) using data collected from exten-
sive range of literature. The ranking revealed that wind power 
is the most sustainable, followed by hydropower, PV and then 
geothermal. 

Table 7. Sustainability rankings (Evans, et al, 2009).

PV Wind Hydro Geothermal

Price 4 3 1 2

CO2-equivalent 3 1 2 4

Availability 4 2 1 3

Efficiency 4 2 1 3

Land use 1 3 4 2

Water consumption 2 1 3 4

Social impacts 2 1 4 3

Total 20 13 16 21

Jacobson (2009) also ranked the renewable energies in terms 
of cleanness (see Table 8). Wind was also ranked No. 1 and 
geothermal was ranked No.3 in all of the 7 different types of 
renewable energies.

Table 8. Rankings of renewable energies (Jacobson, 2009; Evans, et al, 
2009).

Ranking By cleanness By Sustainability
1 Wind Wind 
2 CSP Hydro 
3 Geothermal PV
4 Tidal Geothermal 
5 PV
6 Wave

7 Hydro

Jacobson (2009) pointed out: the use of wind, CSP, geother-
mal, tidal, PV, wave, and hydro to provide electricity will result 
in the greatest reductions in global warming and air pollution and 
provide the least damage among the energy options considered.

Solutions to Speed Up Geothermal  
Power Growth

It is obvious that geothermal power has been lagged behind 
wind and solar in terms of both growth rate and installed capacity. 
As stated previously, geothermal power growth has only a few 
percent per year. The increase is more or less linear while wind 
and solar PV power exhibit fast-tracking growth with a clearly 
exponential tendency.

How do we speed up the growth of geothermal power? Many 
researchers have tried to answer this question. However there are 
no easy answers and solutions. Considering the present status 
and the literature review, some of the solutions and directions 
are suggested:

•	 New technology
•	 Co-produced geothermal power from oil and gas fields
•	 EGS
 Discussion on the above possible ways and approaches to 

speed up geothermal power growth is addressed as follows. 

New Technology
There have been many great technologies in the area of 

geothermal power generation. New technologies, however, are 
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definitely required to speed up the growth of geothermal power. 
Why? It is because it has been tested and shown that current 
commercially available geothermal technologies can only yield 
a linear, instead of an exponential, and a very slow growth rate 
in the last four decades or so. 

One of the new technologies that may make breakthrough is 
the technology to directly transfer heat to electricity, without going 
through mechanical function. Such a technology exists and has 
been utilized for a while in making use of waste heat. The core 
part of this technology is the thermoelectric generator or TEG 
(Thacher, 2007). TEG has almost all of the advantages of PVs. 
Plus, the lower limit temperature for generating electricity using 
TEG may be 30℃. With this advantage, much more geothermal 
resources might be used and much more power might be gener-
ated using TEG technology. Li, et al. (2013) has conducted some 
preliminary study on TEG.

Co-Produced Geothermal Power  
from Oil and Gas Fields

There is a huge amount of geothermal resource associated with 
oil and gas reservoirs for power generation and other purpose (Li, 
et al, 2007; Erdlac et al, 2007; Johnson and Walker, 2010; Li, et al, 
2012; Xin, et al, 2012). There are 164,076 oil and gas wells (2005 
data) in China. 76,881 wells have been abandoned, about 32% 
of the total. These abandoned wells may be served as geothermal 
wells. The potential geothermal resource in the reservoirs holding 
these oil and gas wells is huge.

Erdlac, et al. (2007) reported that Texas has thousands of oil 
and gas wells that are sufficiently deep to reach temperatures 
of over 121°C and sometimes 204°C. In total there are 823,000 
oil and gas wells in the United States. The possible electricity 
generation from the hot water, estimated by Erdlac, was about 
47-75 billion MWh (equivalent to about 29-46 billion bbls of 
oil). 

The main advantage of the co-produced geothermal power is 
the lower cost than that of EGS because the infrastructure, includ-
ing wells, pipes, roads, and even grid, is already there.

EGS
One of the hot spots in geothermal industry in recent years was 

EGS since the publication of MIT report (Tester, et al, 2006). Many 
papers have been published in the area of EGS. It is known that 
EGS has a huge amount of resource. The EGS geothermal resource 
at a depth from 3.0 to 10.0 km in USA is equivalent to 2800 times 
of USA’s 2005 annual total energy consumption if only 2% of the 
EGS resource can be recovered (Tester, et al, 2006). In China, 2% 
of the EGS resource at a depth of 3.0-10.0 km is about 5300 times 
of China’s 2010 annual total energy consumption (Wang, et al, 
2013). According to the above data, EGS has a great theoretical 
potential to speed up geothermal power growth. Unfortunately, 
it is obvious that EGS is presently still at the “proof of concept” 
stage, as pointed out by Rybach (2010).

Conclusions

According to the above review and analysis, the following 
preliminary remarks may be drawn: 

1.	 Geothermal power has been left behind wind and solar in 
terms of both growth rate and installed capacity. The main 
reasons may be high initial investment, long payback time 
and construction time, difficulty to assess resource and 
difficulty to modularize.

2.	 Some of the solutions and directions to speed up geother-
mal growth may be: development and utilization of new 
technologies such as TEG, co-produced geothermal power 
from oil/gas fields, and EGS. Currently EGS is still at the 
stage of “proof of concept”.

3.	 Geothermal power has the potential to grow exponentially 
in the future.
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