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ABSTRACT

Tracer testing is a standard method for tracing mass transport 
within a geothermal reservoir and can be a valuable tool in the 
design and management of production and injection operations.  
In this study, we discuss the use of fractional advection-dispersion 
equation (fADE) model to characterize tracer responses with 
the objective of predicting mass transport in complex fractured 
reservoirs. A 3D fracture network model for flow analysis (FRAC-
SIM-3D) is utilized to produce numerical data of tracer responses 
in fractured reservoirs. It has been shown that the FRACSIM-3D 
reproduces highly anomalous behavior of mass transport, which is 
attributable to the preferential pathways that arise because of the 
degree of fracture connectivity. The fADE mathematical model 
is applied to analyze the numerical tracer results simulated by 
FRACSIM-3D. For comparison, the advection-dispersion equation 
(ADE) is also used to characterize the tracer responses in addition 
to the fADE. Based on the tracer data obtained for a well interval 
of 50m, both the fADE and ADE model are applied to predict the 
tracer responses in the case where the well spacing is extended 
to 80m.  It is demonstrated that the ADE model produces tracer 
curves which deviate significantly from the FRACSIM-3D results 
particularly for long-term behaviors, while the tracer responses 
predicted by the fADE model are in reasonable agreement with 
the numerically obtained data by FRACSIM-3D.  

1. Introduction

Reinjection is an important problem in all geothermal fields 
to prolong the life of the power station. The reinjected water 
is reheated as it passes hot reservoir rocks while moving from 
injection wells back to production wells, and can improve pro-
ductivity by increasing reservoir pressures and replacing produced 
reservoir fluids. In several theoretical and practical studies, it has 

been shown that reinjection is a powerful method for increasing 
the longevity of geothermal resources and the amount of energy 
that can be extracted from a given reservoir (Horne,1985; Ste-
fansson,1997; Kaya et al., 2011). However, in highly fractured 
reservoirs, the thermal energy in the rocks along the path of the 
reinjected water becomes depleted rapidly, and the enthalpy of the 
water arriving at the production wells begins to drop. Therefore, 
the obvious engineering challenges are to evaluate the reinjection 
effects that may occur and to design proper reinjection schemes 
for geothermal reservoirs.

Tracer testing is a standard method for tracing mass transport 
within a geothermal reservoir and can be a valuable tool in the 
design and management of production and injection operations 
(Horne, 1985; Niibori, 1995; Pruess, 2002).  Shook (2001) 
discusses the potential application of tracer data to provide rela-
tively simple reservoir properties and to make a prediction of 
thermal breakthrough. Such knowledge of the flow field offers a 
means of identifying problems with, and optimizing, injection. 
Through numerical simulation, one may further predict the onset 
of cooling in produced fluids. It may be advantageous if we can 
determine the reinjection conditions such as well location and 
injection flow rate, based on field tracer data obtained from a pair 
of exploratory wells.  

The advection-dispersion equation (ADE) is widely used in 
hydrology to model transport of dissolved chemicals in subsurface 
water (Bear, 1972). Numerous field experiments for the solute 
transport in highly heterogeneous media demonstrate that solute 
concentration profiles exhibited anomalous non-Fickian growth 
rates, skewness, sharp leading edges and so-called ‘‘heavy tails’’ 
(Hatano and Hatano, 1998; Levy and Berkowitz, 2003; Benson 
et al., 2000). The ADE, however, cannot predict these effects. 

One promising approach developed to model contaminant 
transport in heterogeneous media of fractal geometry is the frac-
tional advection-dispersion equation (fADE) (Fomin et al, 2011). 
Through the use of fractional derivatives in time and space, the 
fADE can account for effects of solute transport retardation due 
to solute exchange between fracture network and rock matrix 
in fractured reservoirs. They suggest that calibrating the math-
ematical model and specifying the values of parameters in the 
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mathematical model may provide important information about 
the geological structure of the rocks.

The aim of this study is to evaluate the applicability of the 
fADE model in the prediction of mass transport in complex frac-
tured media. In this study, we utilize a 3D fracture network to 
produce numerical data of tracer responses. The fracture network 
model is based on a fractal fracture network model, and a number 
of disk-shaped fractures are generated assuming the fractal cor-
relation based on the power-law relationship between the fracture 
length and the number of fractures. Through the synthetic tracer 
results, we are able to evaluate the effects of fractal geometry of 
fracture distributions on anomalous mass transport in a fractured 
reservoir. The fADE mathematical model is applied to fit the 
numerical tracer results simulated by the fracture network model 
and to predict the mass transport between an arbitrary set of 
wells, based on a tracer test result taken for a pair of wells with 
a certain interval.

2. fADE Model
2-(1) Governing Equation

Fomin et al. (2011) assumed that a fractured porous reservoir 
is composed of two parts: rock matrix and fracture network based 
on fractal geometry. A schematic sketch of a fractured porous 
reservoir is presented in Fig. 1. The fracture network consists of 
a number of fractures whose length distribution follows the fractal 
geometry. The overall morphology can be viewed as a tree-like 
pattern. Primary tracers are mainly transported though the mac-
roscopic stem of the tree-like fractures, and a certain portion of 
the tracers diffuse through the wall of the stem into the secondary 
fractures (mesoscale). Furthermore, the tracer into the rock matrix 
is transferred by diffusion from the macroscopic fractures. An 
equation of mass transport in the above fractured reservoir can 
be presented in the following form: 

∂C
∂T

+ b ∂
γ C
∂T γ = − 1

Pe
∂J
∂X

− ∂C
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 (1)
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⎠
⎟  (2)

Note that the Eqs. (1) and (2) have already been converted 
into non-dimensional form with the proper characteristic scales 
(Fomin et al., 2011). C, T, and J are the concentration in a frac-
tured reservoir, time, and the dispersive mass flux in a fractured 
continuum in the x-direction, respectively. b is the factor of 
retardation processes and Pe is the Peclet number, respectively.  
α (0< α <1) and γ (0<γ <1) are the order of fractional spatial and 
temporal derivatives, respectively. If the pore medium is composed 
of fractal structure or has a fractal distribution, the mass exchange 
from macroscopic fractures into matrix rocks can be expressed 
with fractional temporal derivatives. Namely, the effect can be 
expressed by the second term of left-hand side in Eq. (1). The mass 
flux in the reservoir, which is composed of fractal fracture network, 
can be defined as Eq. (2) with spatial fractional-derivative. While 
a term of describing diffusion into the surrounding rocks, which 
is assumed in the equation derived by Fomin et al. (2011), may be 

an important aspect of mass transport, it is deliberately neglected 
here to avoid possible interactions with the non-Fickian dispersion 
within the fractured reservoir.

2-(2) Finite Difference Solution of the fADE
Fomin et al. (2011) can only obtain an analytical solution of 

the fADE in the particular case when mass transport along the 
aquifer was dominated by the advection, and the first term in the 
right-hand side of the Eq. (1) was ignored. In order to make the 
practical application of fADE available, we present a finite dif-
ference approach to solve the Eqs. (1) and (2). 

We will assume that C(X, T)>=0 over the region 0<= X <= L 
, 0<= T <= T  max . Define tn =nΔt to be the integration time 0<= 
tn <= T max, Δx >0 to be a grid size in spatial dimension whereΔx 
= L / NX, xi =iΔx for i =0,..., NX so that 0<= xi <= L. Let an ap-
proximation to C(xi, tn). We have the finite difference solution 
combining Eqs. (1) and (2), which is discretized in time using an 
implicit (Euler) method:
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In this work, we use the prescribed-flux boundary, which has 
a prescribed flux at the inlet x = 0 and a free drainage at the outlet 
x = L (Zhang et al., 2007).

Figure 1. Schematic of the fADE in a fractured aquifer.
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3. Numerical Analysis
3-(1) Flow Analysis by FRACSIM-3D

Α numerical model FRACSIM-3D, which is developed by 
Watanabe and Takahashi (1995) and Jing et al. (2000), is proved 
to be an appropriate approximate model capable to address si-
multaneously the problems associated with hydraulic stimulation, 
fluid circulation and heat extraction. The FRACSIM-3D code has 
been used to model the Hijiori and Soultz reservoirs. In the Hijiori 
model, the simulation tracer responses have been in reasonable 
agreements with the observed results (Jing et al., 2000).

In FRACSIM-3D fractures are generated stochastically within 
a fracture generation area as shown in Fig. 2. The fracture cen-
ters are uniformly random, with the length distribution fractal 
and orientation controlled by specifying ranges of azimuths and 
frequencies for a number of fracture sets. The fracture realization 
stops when the fracture density (fractures per meter) reaches a 
specified level. The quantity of fluid flow from block to block is 
controlled by Darcy’s law with the permeability distributions from 
each fracture governed by the sum of the products of the cubes 
of the fracture apertures and the fracture intersection. Accounting 
for the mass conservation equation, fluid flow is assumed to be 
laminar and controlled by the continuity equation: 

∂
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where Ki is the permeability for each surface of a grid. P is the 
pressure. A natural fluid flow is assumed to take place from the 
injection point toward the production point and is simulated by 
pressure gradient between inlet boundary and outlet boundary side. 

A method for tracking tracer particles has been built in the 
model (Jing et al., 2000). The tracer analyses are based on the 
premise that tracer substances are particle ensembles and each 
tracer particle travels from the injection well to the production 
well located in the above flow. The transit time is calculated and 

added to the total time elapsed since injection for this particle and 
the block coordinates updated to those of the new block. 

3-(2) Application of the fADE to the Numerical 
Tracer Responses

The Eqs. (1) and (2) were converted into non-dimensional form 
with the proper characteristic scales. The tracer results obtained by 
FRACSIM-3D also need to be rewritten in non-dimensional forms 
for comparison with the fADE solutions. The proper characteristic 
scales are defined as follows. The characteristic scale for the vari-
able x along the reservoir is the well spacing. The characteristic 
scale for time represents average tracer travel time. The initial 
concentration of tracer from injection well, which includes the 
recovery rate and the mixing ratio of tracer responses, can be used 
as the characteristic scale for solute concentration.

We used calculated data on 50 tracer responses from differ-
ent fracture network models in which the random seeds varied. 
First of all, the length of well spacing was set to 50 m. The fADE 
mathematical model was applied to fit each numerical tracer results 
simulated by FRACSIM-3D. For comparison, the ADE also used 
to characterize each tracer responses in addition to the fADE. 
Note that ADE is the special case of fADE in which the value of 
α and γ is set to 1. Namely, the ADE is not composed of fractional 
derivatives but includes the retardation term as described in the 
second term in left-hand side of Eq. (1). For each optimal value 
of α, γ, b, and Pe were estimated to minimize the root- mean-
squared error (RMSE): 

RMSE = 1
N

Cie −Cic
Cic

⎛
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⎠⎟i
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∑
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 (5)

where Cie is the estimated concentration, Cic is the calculated 
concentration, and N is the number of observed concentration 
data at a particular observation point.

Consequently, the determined constitutive parameters were 
then used in the fADE and ADE models to predict the tracer re-

sponses in the case where the well spacing was extended 
to 80 m and each of the tracer responses predicted by 
the mathematical models were compared with those 
calculated using FRACSIM-3D for the well interval 
of 80 m. 

To compare the two models considered, both the 
determination coefficient (r2) and RMSE were used as 
two criteria to reflect the goodness of simulation. r2 can 
be expressed as:

r2 = 1−
Cie −Cic( )2

i

N∑
Cic −Cic( )2

i

N∑
 (6)

where Cic represents the mean values of Cic. Finally, we 
calculated the mean value of r2 and RMSE for each 50 
tracer responses.

4. Results and Discussion

The FRACSIM-3D produced numerical data of trac-
er responses with different fracture densities. Problem 
parameters are given in Table 1. Here we present re-Figure 2. Schematic of tracer response analysis based on the fractured reservoir model.
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sults of three tests that were performed to evaluate the effects of 
fracture densities on tracer responses. The tracer responses at frac-
ture densities of 19, 1.9, and 0.6 [1/m], respectively, are shown in 
Fig. 3. In order to compare the tracer response curves with Fickian 
behaviors, the ADE was applied to fit them, and the solutions are 
also plotted in Fig.3. The simulated result at fracture density of 19 
[1/m] shows a relatively regular and symmetric shape and agree-
ment with the solution of ADE in Fig. 3 (a). The result indicates 
that the transport has translated to Fickian. In contrast, the tracer 
response at fracture densities of 0.6 [1/m] is more irregular and in 
disagreement with the solutions of ADE, as shown in Fig. 3 (c). 
The feature of tracer responses can be regarded as non-Fickian. 

The horizontal cross-sections of permeability distribution for 
each block surface, in the three cases when fracture density varies, 
are presented in Fig. 4. The distribution of permeability is gov-
erned by the sum of product from each penetrating fracture. Thus, 
we can evaluate the effects of fracture distributions on fluid and 

mass transport using these distributions 
of permeability. In addition, we are able 
to visualize a 3D map of some particle 
pathways from injection well to produc-
tion well at fracture density of 19, 1.9, and 
0.6[1/m], respectively (see Fig. 5). The 
permeability distribution at high fracture 
density seemed to be heterogeneous by the 
existence of a number of large fractures. 
However, the flow paths of tracers from 
injection well to production well is along 
x direction at fracture density of 19[1/m] 
as shown in Fig. 5 (a). This result indi-
cates that fractures are much enough to 
occupy within whole the calculation area, 
and the reservoir is assumed to become a 
relatively homogeneous fluid medium. 
Thus, it is assumed that fracture network 
does not interrupt the movement of tracer 
particles. 

On the other hand, a sparse perme-
ability distribution is shown in Fig. 4 
(c), whose fracture density is set to 0.6 
[1/m]. We can clearly distinguish the 
fracture network from rock matrix.  Then, 
the tracer particle paths do not move in 
a straight line along x-axis as shown in 
Fig. 5 (c). That gives evidence for the 
existence of fast preferential flow paths, 
which are attributable to heterogeneous 
arrangement of fractures. Since individual 
tracer particles move along various flow 
paths and cause a broad range of travel 
time distribution, tracer response curve 
seems to be identified as non-Fickian 
behavior. 

An arbitrary set of the calculated and 
fitted tracer response at distances of 50 m 
at fracture density of 1.9 [1/m] is shown 
as Fig.6 (a). The 50 tracer responses for 
different fracture network were individu-

Table 1. Parameters used for the simulation.

Parameters Value
Calculation domain [m] 100x100x70
Element size [m] 1x1x1
Fractal dimension 2.5
Fracture radius r [m] 1~25
Fracture aperture [m] 1.0×10-4×r
Well length [m] 50
Injection pressure [Pa] 1.1×105

Production pressure [Pa] 1.0×105

Matrix permeability [m2] 0
Viscosity of water [Pa s] 1.826×10-4

Number of tracer particles 1.0×104

Figure 3. Profile of tracer responses at fracture den-
sity of (a) 19 [1/m], (b) 1.9[1/m], and (c) 0.6[1/m].

Figure 4. Horizontal cross-sections of permeabil-
ity distribution at fracture density of (a) 19 [1/m], 
(b) 1.9[1/m], and (c) 0.6[1/m].
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ally fitted with the fADE and the ADE. The concentration data 
in the figure have already been normalized by the suitable values 
before the parameters in two models were estimated. The mean 
values of estimated parameters for each tracer responses are 
listed in Table 2 for the fADE and the ADE. There are profound 
discrepancies between the calculated tracer result at 50 m and its 
fitted by the ADE. The fitting results of the ADE at the tails of 
tracer responses are slightly smaller than the calculated results. 
Compared to the ADE, the fADE provides better simulation results 
at the tailing parts of tracer behaviors, as evident from Fig. 6 (a). 
This indicates that the fADE is capable of describing the long tail 
of tracer responses somewhat. 

Consequently, the estimated constitutive parameters in the 
fADE and ADE models were then used to predict the tracer re-
sponses in the case where the well spacing was extended to 80m 
and the tracer responses predicted by the mathematical models 
were compared with those calculated using FRACSIM-3D for 
the well interval of 80m.  The simulated and predicted tracer 
concentrations at distance of 80 m are shown in Fig. 6 (b). The 
associated r2 and RMSE values are listed in Table 2. ADE is less 
satisfactory to predict the tracer responses, as illustrated in Fig. 
6 (b). Compared to the ADE, the predicting result of the fADE is 
more satisfactory. This is also indicated by the larger r2 and small 
RMSE values of the fADE than those of the ADE, as shown in 
Table 2. The fADE captures the evolution of tracer responses, 

especially their tails. This result demonstrates the applicability of 
the fADE in characterizing anomalous transport in the fractured 
reservoir. As shown in Table 2, there were no significant differ-
ences in the parameter values of α, Pe, b of the fADE and ADE 
models. In contrast, the value of γ varied between the fADE and 
ADE. Since the fADE including the time fractional derivative 
is able to describe the effects of dispersion process into second-
ary fractures, it seems suitable to interpret the anomalous tracer 
behaviors in fractal fracture networks.

The present study, which was based on the comparison of the 
mathematical and numerical models, shows that the fADE model 
provides a useful tool for characterizing the anomalous mass 

Figure 5. Particle travel paths at fracture density of (a) 19 [1/m], (b) 
1.9[1/m], and (c) 0.6[1/m].

Figure 6. (a) Comparison of the temporal concentration profiles estimated 
by the fADE (solid line), the ADE (dashed line), and the calculated data at 
distance of 50m from FRACSIM-3D (symbols) (b) predicted by the fADE 
(solid line), the ADE (dashed line) and calculated (symbols) temporal 
concentration profiles at distance of 80m.

Table 2. Average of best-fit parameters, determination coefficient r2 and 
root mean square error RMSE for fADE and ADE model obtained by 
estimation of 50 tracer responses. The values of α and γ in ADE are given 
as 1.

Average Best-Fit Parameters
Average  

Estimation
γ α b Pe r2 RSME

fADE 0.2 0.98 0.1 7.45 0.835 1.996
ADE 1* 1 0.11 7.04 0.749 3.475
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transport behavior in complex fractured reservoirs. Furthermore, 
the fADE possesses a potential to predict the mass transport based 
on tracer response curves. According to Shook (2001), velocity 
and travel time of the thermal front is possible to be estimated by 
analyzing a tracer response curve. If we develop a tracer analysis 
method to predict thermal breakthrough based on the fADE, the 
method may be advantageous to design injection conditions, such 
as well locations, flow rates, or temperatures. The dispersion of 
injected water into secondary fractures, which is taken account 
in the fADE, can affect the thermal breakthrough behavior and 
should be considered in the prediction of reservoir behaviors. 
Future work is expected to expand the fADE model with respect 
not only to mass transfer but also to heat transfer model.

5. Summary

The fractional Advection Dispersion Equation (fADE) can be 
a useful tool for analyzing tracer transport behaviors in fractured 
reservoirs. Through the use of fractional derivatives in time and 
space, the fADE can account for effects of solute transport retar-
dation due to solute exchange between fracture network and rock 
matrix in fractured reservoirs. In this paper we presented a finite 
difference approach to solve the equations in fADE.

A 3D simulation code for flow analysis (FRACSIM-3D) was 
utilized to produce numerical data of tracer responses.  FRACSIM-
3D was based on a fractal fracture network model, and a number 
of disk-shaped fractures are generated assuming the fractal cor-
relation based on the power-law relationship between the fracture 
length and the number of fractures.  The density of the natural 
fractures was varied in the numerical analyses.  It has been shown 
that the FRACSIM-3D reproduced highly anomalous behaviors 
with heavy tails at low fracture densities. The feature of anomalous 
tracer responses was often observed in field or laboratory tests.  
The tracer responses that were not adequately explained by the 
advection - dispersion equation (ADE) were therefore regarded as 
non-Fickian transport. The anomalous tracer responses produced 
by FRACSIM-3D was attributable to the preferential pathways 
that arose because of the degree of fracture connectivity.

The fADE mathematical model was applied to fit the numerical 
tracer results characterized by non-Fickian. For comparison, the 
ADE was also used to describe the tracer responses in addition to 
the fADE. The curve fitting enabled us to determine the constitu-
tive parameters in both the mathematical models by analyzing the 
tracer data obtained for a well interval of 50m. The determined 
constitutive parameters were then used in the fADE and the 
ADE models to predict the tracer responses in the case where the 
well spacing was extended to 80m. It was demonstrated that the 
tracer responses predicted by the fADE model was in reasonable 
agreement with the numerically obtained data by FRACSIM-3D, 

while the ADE model produced tracer curves which deviated 
significantly from the FRACSIM-3D results particularly for 
long-term behaviors.
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