Hydrochemical Properties of the Thermal Waters of Mahalat Abgarm, Iran

Feridon Ghadimi¹, Mahmoud Mirzaei², Mohammad Ghomi¹, and Majid Mina²

¹Department of Mining Engineering, Arak University of Technology, Arak, Iran ²Faculty of Science, Department of Physics, Arak University, Arak, Iran <u>drghadimi@yahoo.com</u> • <u>m-ghomi@arakut.ac.ir</u> • <u>m-mirzaei@Araku.ac.ir</u>

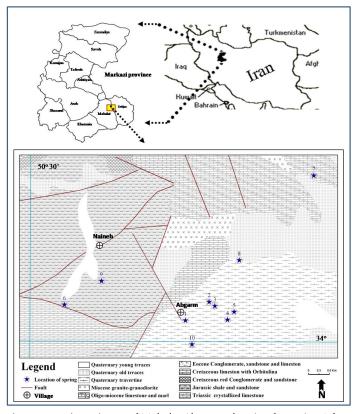
Keywords

Spring, thermal water, geochemical data, Mahalat

ABSTRACT

Thermal waters are mainly SO₄-Ca type, with high TDS, while cold waters are mostly SO₄-Ca and HCO₃-Ca type respectively. Hydrogeological parameters affecting spring waters include dissolution, hydrolysis and alteration. In the thermal waters, high Ca, Mg, Na and K interpreted to be due to leaching of cations in the rocks by water. High SO₄ and high Ca+Mg and low Cl suggested a carbonate source with anhydrite. Chemical changes of the cold water samples were highly influenced by water-rock interaction.

1. Introduction


Springs can be classified into different water types based on the compositions of their major ions (Minissale et al., 1997; Mariner et al., 2003). Major ions in spring waters include HCO_3^{-1} , Cl⁻, SO₄²⁻, Na⁺, K⁺, Ca²⁺ and Mg²⁺ which mainly originate water - rock interation (Davisson et al., 1994; Minissale et al., 1997). Therefore the water quality of springs is highly associated with their geological conditions and evolution, and hydrochemical composition of spring water can indicated the geological origin (Sanada et al., 2006; Tarits et al., 2006). Furthermore, temperatures and pH of the springs exhibit high variability, resulting in significant difference in species and quantities of hydrochemical parameters. For instance, bicarbonate ions which stem from the dissolution of carbonate-rich rocks are controlled by pH in water and are present within the pH range of 4 to10 (Chen and Sung, 2009). Zhu and Yu (1995) documented that high temperatures in spring waters tend to increase dissolution quantities of certain ions, such as K^+ , Na^+ , Cl^- and SiO_2 .

2. Geology of Study Area

The study area is situated in the central part of Iran in Markazi Province near Mahalat City. The study area is located in the central Iran volcanic zone. Formation of the basin begun on Paleozoic time. The dolomite and limestone of Permian age can be observed. The geomorphology of the region is mountainous. Sediments of Eocene age consist of marl, sandstone, shale and conglomerate (Araghi, 2009) (Fig. 1).

3. Field Work of Springs and Laboratory Analysis

Water samples were collected from thermal and non-thermal springs in 1995, 2009, June 2010 and September 2010 (20 thermal

Figure 1. Geological map of Mahalat Abgarm, showing formation (after Araghi 2009) and sample points.

Table 1. Chemical data average for thermal and non-thermal waters.

No.	Name	Tem	pН	EC	TDS	Na	K	Ca	Mg	SO_4	Cl	HCO ₃	SiO_2	$\delta^{18}O$	$\delta^2 H$
		°C		µs/cm					mg/l					9	60
1	Shafa	47.3	6.7	1783	1137	131	4.6	257	44.7	735	50.2	222	40	-9.40	-66.5
2	Dombeh	46	6.7	1782	1142	131	4.2	253	48.6	904	50.4	198	41	-9.47	-68.4
3	Solimani	46	6.8	1781	1131	130	5.5	263	48.4	889	50	207	42	-9.29	-66.6
4	Soda	45.1	6.8	1786	1140	126	3.5	262	49.7	969	49.5	209	35	-9.25	-63.9
5	Naineh	19.9	8.2	652	362	47	2.2	112	21.3	170	55.4	171	40	-9.42	-64.4
6	Abgarm	35.8	7.1	1782	1146	125	4.7	252	53	889	49.4	203	37	-9.11	-64.3
7	Ziaratghah	18.4	8	332	572	10	2.7	64	15.1	47	21.4	140	13.1	-8.97	-56.8
8	Siagohar	18.2	7.3	1612	912	133	3.5	271	42.9	905	67.7	187	32.4	-8.80	-63.3
9	Talkheh	25	8.1	2470	1434	184	4.29	350	96	1634	76	138	22.2	-7.20	-54.4
10	Biname	19.8	8.1	2170	1259	166	4.29	318	78	1318	63.5	215	37	-8.52	-61.3

springs of non-thermal springs with relatively high bicarbonate are distant from the above group, Table 2. Lists hydrochemical parameters in thermal and non-thermal springs. Thermal spring temperatures and pH of discharging water range from 35.8 to 47.3°C and from 6.7 to 7.1, respectively. The spring water is reach in SO_4^{2-} , Ca^{2+} ions and contains small amounts of Cl⁻, Mg^{2+} , Na^+ , K^+ , HCO_3^- ions except spring 7 and 5. Spring 7 is in HCO_3^- and Ca^{2+} ions and spring 5 is rich in SO_4^{2-} and Mg^{2+} ions.

All of the springs are close to the hydrothermal source, therefore, are rich in SO_4^{2-} and springs emerged from lime-

and 10 samples of non-thermal springs). The discharge rates of these springs vary from less that 5 to 0.5 l/s and their fluid temperatures range between 18.2°C and 47.3°C. Physico-chemical parameters of the waters, such as temperature, pH and electrical conductivity (EC), were measured in the field, while Ca, K, Mg, Na, HCO_3 , SO_4 and Cl ions were measured in the laboratory using standard titration and inductivity coupled plasma (ICP) methods. Silica was determined using a

HACH/2000 spectrophotometer. The results of the chemical data are present in Table1. Each element was above detection limit.

4. Hydrochemical Features of Springs

The hydrochemical data are shown on the piper diagram (in Fig. 2). The central diamond-shaped figure indicates that most spring waters concentrate in the high SO_4 water. All of the thermal springs and three non-thermal springs fall into SO_4 regions but two

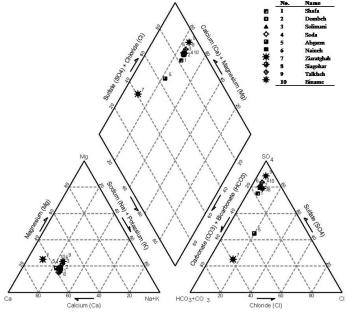


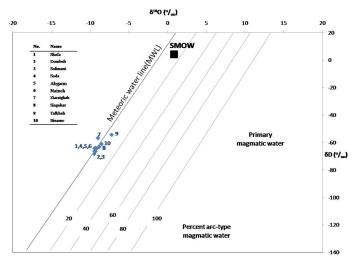
Figure 2. Piper diagram of spring water of Mahalat Abgarm.

 Table 2. Statistics associated with hydrochemical parameters of thermal and non-thermal springs.

Statistical parameters		Temp	pН	EC	TDS	Na	Κ	Ca	Mg	SO_4	Cl	HCO_3	SiO ₂
		°C		μs/cm				mg/l					
	Average	43.8	6.82	1782	1139.2	128.6	4.50	257.4	48.9	877	49.9	207	39
Thermal Springs	Maximum	47.3	7.10	1786	1146	131	5.50	263	53	969	50.4	222	42
Springs	Minimum	35.8	6.70	1781	1131	125	3.50	252	44.7	735	49.4	198	35
Non-	Average	20.3	7.94	1367	907.8	108	3.40	223	50.7	815	56.8	170	28.9
Thermal	Maximum	25	8.20	2470	1434	184	4.29	350	96	1634	76	215	40
Spring	Minimum	18.2	7.10	332	362	101	2.20	64	15.1	47	21.4	138	13.1

stone, have abundant Ca^{2+} ions. Spring 7 is non-thermal and has abundant HCO_3^- . Rocks of all springs are limestone and have abundant Ca^{2+} ions.

Thermal springs have Ca²⁺> (Na⁺+K⁺)> Mg²⁺ and SO₄²⁻> HCO₃^{->} Cl⁻ and have high SiO₂ concentrations. SiO₂ contents of thermal springs range from 35 to 42 mg/l. EC values for thermal springs are 1783 μ s/cm. Non-thermal springs have Ca²⁺, Na⁺, K⁺, HCO₃⁻, SO₄²⁻, and SiO₂ less than thermal springs except Mg²⁺ and Cl⁻. EC values for these springs are 908 μ s/cm and SiO₂ values change from 13.10 to 40 mg/l.


5. Water Chemistry

Major ion composition can record of water-rock interaction during flow (Moller et al., 2007). The hydrochemical characteristics of various waters can be seen from physico-chemical data (Table 1) and Piper plots (Fig. 2). The thermal and non-thermal springs plot in distinct fields. Thermal spring samples are SO_4 -Ca in chemical. TDS, EC, Na⁺, K⁺, Ca²⁺, HCO₃⁻, SO_4^{2-} and SiO_2 concentrations with a mean TDS of 1139 mg/l are higher than in non-thermal springs. Mg²⁺ and Cl⁻ concentrations are lower in the thermal springs than non-thermal water. Higher TDS in the thermal springs probably reflect longer circulation and residence times. The thermal springs of Mahalat Abgarm flow through karst aquifers. This is likely responsible for the higher Ca²⁺ and SO₄²⁻ in this water. Non-thermal springs are mainly SO₄. HCO₃-Ca type with mean TDS of 908 mg/l, which are close to the thermal region. (Han et al., 2010).

The cations of these solutes can be derived from rock dissolution by chemical weathering. The typical rock composition in this area was calculated on the basis of a pervious study (Hatafi et al., 2009). The result showed that calcite, quarts, goethite, gypsum, plagioclase, orthoclase, biotite, illite, muscovite and clay minerals such as montmorillonite and vermiculite occupies the all minerals of Mahalat Abgarm area. This composition suggests that the leaching rate of Ca, K, Mg and Na should be significant in the initial stage of water interaction process, according to the Goldich series (Goldich, 1938). Experimental works also demonstrate that calcite, plagioclase and orthoclase dissolution affect the initial water formation by water- rock interactions (Tamari et al., 1988) and the neutralized of acidic water is completed within several days.

Samples are very high SO_4 contents and high Ca+Mg and low Cl suggest a carbonate source with anhydrite. The high HCO₃ of the water from thermal waters after SO_4 is typical of meteoric waters forming at the margins of major up flow zones through conversion of dissolved CO₂ to HCO₃. Water-rock interaction at decreasing temperature favors the formation of HCO₃ (Giggenbach et al., 1995).

The high CO₂ values result from volatiles escaping from a deeper limestone aquifer (Baitollahi, 1995), that interact with shallow waters of meteoric origin; meteoric origin is the clearly shown by the fact that the samples lie close to the GMWL on the δ^{18} O-D plot (Fig. 3). The main rock for thermal water is Permian limestone in the Mahalat Abgarm and there is thick travertine deposit around of thermal springs (Araghi, 2009) that verify degassing of CO₂ from springs (Ghorbani, 2009). In cold water, hydrochemical parameters (cations and anions) are the major solutes leached from rocks or discharged from rocks by dissolution from rocks such as marl, sandstone, and conglomerate host rocks (Araghi, 2009).

Figure 3. δ^{18} O vs. D Plot in thermal water from Mahalat Abgarm area (Giggenback, 1997).

6. Conclusion

Mahalat Abgarm spring waters of resualts leaching of cations in the rocks by meteoric/ thermal waters. High SO_4 , Ca, Mg and

low Cl suggest a carbonate source with anhydrite. Dissolved HCO_3 and the high CO_2 values result from volatiles escaping from a deeper limestone aquifer that interact with shallow water of meteoric origin. The cold spring waters of Mahalat Abgarm was contributed by water-rock interaction; Na, K, Ca, Mg, SO₄, and Cl dissolution from marl, sandstone, limestone and conglomerate rocks of process of thermal waters causes over HCO_3 and SiO_2 in cold waters.

7. References

- Araghi, F.M., 2009. Study of Mahalat fault using CRP method, *M.Sc Thesis*, Department of Physics, Arak University, In Farsi.
- Baitollahi, M., 1995. Formation of Travertine and radiological studies of Mahalat Abgarm. *M.Sc Thesis*, Azad University, Iran, In Farsi.
- Chen, W.F., Sung, M.H., 2009. The redox potential of hot springs in Taiwan. Terrestrial, *Atmospheric and Oceanic Science* 20(3): 465-470.
- Ghorbani, S., 2009. Hydrogeology and hydro hydrogeochemistry of mahalat thermal springs. *M.Sc Thesis* in Hydrology, The University of Sistan and Baluchestan, Iran. In Farsi.
- Giggenback, W.F., 1997. The origin and evolution of fluids in magmatichydrothermal systems, In: Barnes, H.L, (Ed.), *Geochemistry of Hydrothermal Ore Deposits*, 3rd ed. Wiley, New Yourk, NY, pp. 737-796.
- Goldish, S.S., 1938. A study in rock weathering. J. Geol. 46: 17-58.
- Han, D.N., Liang, X., Jin, M.G., Currell, M.J., Song, X.F., Liu, C.M., 2010. Evolution of groundwater hydrochemical characteristic and mixing behavior in the Daying and Qicum geothermal systems, Xinzhou Basin, *Journal of Volcanology and Geothermal Research*, 189: 99-104.
- Hatafi, R., Massodi, F., Shaker, F., Salehi, Z. 2009. Relationship calcalkalin magmatism and formation of goethite in northeast of Mahalat Abgarm. *Geological of Iran, Thirth Conference*, 10, 69-76, In Farsi.
- Mariner, R.H., Evans, W.C., Presser, T.S., White, L.D., 2003. Excess nitrogen in selected thermal and mineral springs of the Cascade Range in north California, Oregon, and Washington sedimentary or volcanic in origin. *Journal of Volcanology and Geothermal Research* 121: 99,114.
- Minissale, A., Magro, G., Vasseli, O., Verruchi, C., Perticone, I., 1997. Geochemistry of waters and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). *Journal of Volcanology* and Geothermal Research, 79: 223-251.
- Moller, P., Rosenthal, E., Geyer, S., Flexer, A., 2007. Chemical evolution of saline waters in the Jordan-Dead sea transform and in adjoining areas, Int. J. Earth Sci (Geol Rundsch), 96: 541-566.
- Sanada, T., Takamutso, N., Yoshike, Y., 2006. Geochemical interpretation of long-term variations in rare earth element concentrations in acidic hot spring waters from the Tamagawa geothermal area, Japan, *Geothermics* 35: 141-155.
- Tamari, Y., Tsuji, H., Kusaka, Y., 1988. Relation between land-water quality and its surrounding geology: Analysis from leaching experiments of roks. *Chikyukagku*, 22: 139-147 (in Japanese).
- Tarits, C., Renaut, R.W., Tiercelin, J.J., Herisse, A.L., Cotton, J., Cabon, J.Y., 2006. Geochemical evidence of hydrothermal recharge in Lake Baringo. Central Kenya Rift Valley. *Hydrological Process*, 20: 2027-2055.
- Zhu, B.Q., Yu, H., 1995. The use of geochemical indicator elements in the exploration for hot water sources within geothermal fields. *Journal of Geochemical Exploration*, 55: 125-136.