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ABSTRACT

Accurate hypocentral locations of micro-earthquakes are 
essential for enhanced geothermal systems characterization and 
represent a first step for subsequent seismic analysis. Here we pres-
ent an innovative location algorithm and software that provides 
robust locations and (Bayesian) estimates of the location error. 
Robustness to data error is highly useful for automated detection 
and location systems. Improved error estimates allow operators 
to reliably image fracture geometry with a precise understanding 
of the true spatial resolution (i.e. determine whether a “cloud” of 
seismicity truly represents a diffuse fracture network or is simply 
an artifact of location error). The probabilistic error estimates 
also provide a solid basis for risk assessments based on inferred 
fracture geometry. 

The problem of locating seismic activity (3-dimensional 
position and time, i.e. the hypocenter) has a long history in the 
seismic community. The location problem itself can be stated as 
a relatively simple inversion: find the hypocenter that minimizes 
the difference between the observed and predicted arrival times 
of seismic phases at a network of seismic instruments. Complicat-
ing factors include: (1) the predicted arrival-times are imperfect, 
due to an imperfect earth model, (2) the observed arrival-times 
are subject to measurement error, and (3) the data set of arrival 
times can be corrupted by phase labeling and instrument timing 
errors. The fact that geographic network coverage is commonly 
not ideal compounds the effect of data errors, leading to inaccurate 
locations. Most troubling, estimates of location uncertainty are 
commonly not representative of true location error, because most 
location methods only account for Gaussian measurement errors. 

Existing location methods fall broadly into two categories: 
those that locate one event at a time (single-event methods) and 
those that locate multiple events simultaneously (multiple-event 
methods). Multiple-event locators are superior to the single-event 
locators, as they can leverage the information available in the 

whole data set to mitigate and/or account for the impact of data 
and model errors. Nonetheless, existing multiple-event location 
results are notoriously subject to systematic biases due to an 
imperfect travel-time model, and multiple-event methods can 
be very sensitive to data set corruption. LLNL-CONF-483197.

We have developed BayesLoc: a robust multiple-event locator 
that improves on existing multiple-event locators, both in terms 
of robustness and accuracy. The locator is probabilistic (Bayes-
ian) and simultaneously provides a probabilistic characterization 
of the unknown origin parameters, corrections to the assumed 
travel-time model, the precision of the observed arrival-time data, 
and accuracy of the assigned phase labels (including identifying 
outliers). Inference on the joint posterior probability distribution 
of all the parameters that define the multiple-event location prob-
lem is carried out using a Markov Chain Monte Carlo (MCMC) 
sampler. The end result is not just a single estimate of the location 
of each event, but a sample (a collection of posterior realizations) 
of locations that are consistent with the observed arrival-time 
data, to the degree of fidelity required by the precision of the 
data and the correctness of the travel-time model. This provides 
consistent location estimates with representative “error bars” 
(e.g., 90% probability regions), along with information about the 
correctness of the assumed travel-time model and the accuracy 
of the arrival-time data. Bayesloc has been successfully used to 
accurately locate event datasets containing tens to thousands of 
events, from small clusters to globally distributed events. In both 
cases location accuracy and uncertainty estimates have been 
validated using ground-truth events. 

In this paper we present the probabilistic approach at the core 
of Bayesloc, how sampling-based posterior inference is carried 
out given observed arrival-time data, case studies at regional and 
global scales, and discuss application of Bayesloc at local distances 
and settings typical of geothermal reservoirs.

Introduction

Accurate location of micro-seismic activity in geothermal 
fields informs estimates of in-situ fracturing that occurs during 
fluid injection and enhanced stimulation activities (e.g. Albright 
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and Pearson, 1982; House, 1987). Single-event location methods 
generally result in a cloud of seismic locations. Unfortunately, 
scatter in seismic locations is thought to be the result of location 
errors, providing little insight into the fracture geometry (e.g. 
Fehler et al., 2001). Event locations based on precise waveform 
correlation picks, careful analyst review, and multiple-event loca-
tion methods can reveal detailed structure of fracture networks 
(e.g. Rutledge and Phillips, 2003), but meticulous data culling is 
required. Unrealistic uncertainty estimates of location results are 
a further shortcoming of current multiple-event methods, which 
use linearized solvers. Formal uncertainties for linearized inver-
sion methods notoriously under estimate the actual errors, which 
can result in inaccurate assessment of the true fracture geometry.

We are adapting the Bayesloc multiple-event location algo-
rithm (Myers et al., 2007, 2009) for application to geothermal 
monitoring. Bayesloc is a joint probability function of the 
multiple-event location system that allows stochastic prior con-
straints on locations, data uncertainty, and travel time predictions. 
A stochastic, non-linear solver is used that properly propagates 
uncertainty throughout the multiple-event system and produces 
non-parametric uncertainty estimates. Bayesloc was initially de-
veloped for use with regional (event-station distances to 2000 km) 
and global monitoring networks, and extensive validation has con-
firmed improved location accuracy and representative uncertainty 
estimates for event locations. Here we outline existing location 
methodologies, the Bayesloc method, and our plan for modifying 
Bayesloc for optimal application to geothermal data sets.

Seismic Event Location

The vast majority of methods for estimating hypocenter 
parameters are based on minimizing the difference between 
observed and predicted arrival times of seismic phases (residuals 
hereafter). Efficient minimization of residuals has traditionally 
involved iterating the solution to a linear system of equations to 
convergence (Geiger, 1912). While numerous strategies to address 
local minima and variable data quality have been introduced since 
the introduction of Geiger’s method, the fundamental method 
remains the same.

If Geiger’s method is used, then hypocenter uncertainties 
are estimated by scaling the partial derivatives at the optimal 
hypocenter by either data misfit (confidence region; Flinn, 1962) 
or by prior estimates for pick and/or travel time prediction error 
(coverage region; Evernden, 1969). Both confidence and cover-
age regions use Gaussian parameterization of uncertainty, which 
results in a 4-dimensional ellipsoid.

Non-linearity in the relationship between residuals and the 
event location increases when the horizontal distance to the sta-
tions of the seismic network is within a few multiples of the event 
depth, which is typically the case for geothermal characterization. 
Depending on the velocity structure and the network configura-
tion, local minima may result in Geiger’s method converging to 
an erroneous hypocenter (local minimum), and the shape of the 
hypocenter uncertainty volume can deviate significantly from the 
Gaussian ellipsoid. Grid-search and stochastic solvers (e.g. Rodi, 
2006; Lomax et al., 2000) are less susceptible to local minima 
and these methods lend themselves to non-Gaussian probability 
regions. These methods are also better suited for use with a 3-di-

mensional seismic model, because they do not require partial 
derivatives, which can be discontinuous and multi-valued in a 
complicated seismic velocity field. 

Multiple-Event Location

The introduction of the multiple-event location technique 
(Douglas, 1967) brought impressive hypocenter precision to event 
clusters that are recorded on a common network. In addition to the 
expansion of the linear system of equations to include hypocenter 
parameters, partial derivatives, and residuals for many events, 
multiple-event formulations also include station-specific travel 
time corrections. Travel time corrections mitigate errors in the 
travel time predictions that are used to compute residuals, which 
improve the precision of hypocenter estimates. However, a loss 
of accuracy – manifested as a consistent and potentially large bias 
for all locations – is well documented (Douglas, 1967; Jordan 
and Sverdrup, 1981; Pavlis and Booker, 1983). If the location of 
one event is known, then accurate locations can be determined 
by locating relative to the master event (Dewey, 1972). However, 
master-event methods assume that the fixed hypocenter is perfectly 
known and that travel time prediction errors for all events and 
phases are the same (or highly correlated) at each of the network 
stations. These conditions are only met when a calibration shot is 
used and seismic ray paths from all events to all stations are similar 
to ray paths for the master event. This is why early multiple-event 
methods are limited to event clusters.

In order to locate over broader geographic areas, Waldhauser 
and Ellsworth (2000) extend the residual differencing method 
(double difference, Got et al., 1994) for application to large 
geographic areas. For a continuous chain of seismicity the relative-
location precision may be bootstrapped through the entire data set 
to attain high precision over the length of the chain. Waldhauser 
and Ellsworth (2000) use arrival-times based on waveform correla-
tion to achieve measurement precision that can exceed the digital 
sampling level. However, even waveform-based picks require data 
culling to remove outliers that stem from spurious correlations, 
cycle skipping, clock errors and other data issues. 

Bayesian Hierarchical Multiple-Event Locator (Bayesloc)
Bayesloc (Myers et al., 2007, 2009) is a formulation of the 

joint probability function that includes:
1. event origins times (o), 
2. travel times (T),

a) Earth-model-based travel times (F), 
b) plus corrections (t), 

3. arrival-time measurement (pick) precisions (s), and 
4. phase labels (W). 

All of these parameters are estimated using the observed 
arrival times (a) and input phase labels (w). Using Bayes’ theo-
rem, the overarching statistical model is

p(o,x,T ,W ,σ ,τ | a,w) =
p(a | o,T ,W ,σ )p(T (x) | F(x),τ )
p(x,o)p(σ )p(τ )p(W |w) / p(a)

 (1)
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Equation 1 decomposes the inversion of arrival times and 
phase-label data to determine the components of the multiple-
event system (left-hand side of equation 1), into a collection of 
“forward” problems and prior constraints (right-hand side of equa-
tion 1). Specifically, the first term (right-hand side) computes the 
probability of observing the collection of arrivals given a set of 
hypocenters, travel times, phase labels, and pick precisions. The 
second term computes the probability of all travel times, given a 
model-based prediction (event location is implicit) and a collection 
of correction parameters. The third, fourth, fifth, and sixth terms 
are prior constraints on hypocenters, arrival-time measurement 
precisions, travel time correction parameters, and input phase 
labels, respectively.  The denominator is the probability over 
all arrival data. We note that equation 1 is a general statistical 
formulation and each of the terms may be specified in a number 
of ways. For example, any Earth model can be used to compute 
the uncorrected travel time (F(x)), and the formulation of travel 
time corrections (t) can take many forms. Specification of each 
term in equation 1 is provided in Myers et al. (2007, 2009), and 
a summary is provided here. 

Arrival time measurement precision (1/variance) is de-
composed into phase, station, event, and cross terms (e.g. 
station-phase). Resolution of the full set of precision parameters 
is dependant on the data set, so selection of precision terms is 
tailored to the data set. For geothermal applications we expect the 
datum-specific measurement precision to take the follow from. 

Vijw( )
−1
= φijw = φw

phφi
evφ j

stφwj
phase−st   (2)

Variance (V) is the reciprocal of precision (ϕ). Sub-scripts w, 
i, and j indicate phase, event, and station, respectively. Super-
scripts are included to clarify prior constraints are enforced for 
each precision category, e.g. phase (ph), event (ev), station, (st). 
Specifically, each precision category is assumed to be a gamma 
distribution with shape and rate parameters that are determined 
in the inversion (See Myers et al., 2007). 

The Bayesloc travel time correction model is designed for 
overall robustness, while allowing path-specific corrections when 
many residuals reveal a consistent travel time prediction bias. My-
ers et al. (2007) present a robust correction model that is limited 
to a phase-specific, static adjustment (αw) to the model-based 
travel time and an additional adjustment that is modulated by the 
event-station distance (βw). Physically, the two terms of the robust 
travel time correction formulation can be interpreted as adjust-
ments to the vertical and horizontal slowness (1/velocity) of the 
Earth model, respectively. Myers et al. (2011) expand the travel 
time correction model to include station, event, and cross terms, 
which enable application to geographically distributed events. For 
geothermal applications we expect the datum-specific travel time 
correction to take the follow from.

δijw =Tijw − Fijw =αw +α j +α jw +αi +βw xi ,sj   (3)

The δ term is the correction to the model-based travel time 
(F). The corrected travel time (T) is the time used to form re-
siduals. The α terms are static adjustments, and the β term is 
modulated by event-station distance (double bars). Prior con-
straints may be placed on αw and βw depending on information 
about the velocity model accuracy. A zero-mean prior is applied 

to other α parameters, to account for path-specific variations 
from the phase-specific corrections (aw, bw), which are applied 
universally.

Myers et al., (2009) introduced stochastic phase labels to 
Bayesloc. Possible phase labels are specified by the user, and a null 
phase is added to account for the possibility that an arrival-time 
datum does not belong to any of the phases under consideration. 

The phase label model starts with the full set (permutation) 
of possible phase labels for each event-station (Wij). The phase 
label permutation is formed by considering that the correct phase 
name may be any of the labels established by the set 
={0,1,2,…, M}, where the integers correspond to the phases under 
consideration and the null phase. For example, if two phases are 
under consideration {P, S} and 1 phase is input for a given event/
station {P}, then Wij has 3 possible configurations{P},{S},{null}, 
and we denote this phase configuration set by

 Θij
* . 

We note that it is possible to create phase label combinations 
that are not physical or highly improbable. For instance, if P and 
S are the phases under consideration, then any case in which the 
phase labeled S arrives before P is not physical and should not be 
considered. We, therefore, establish the set of permutations that 
can physically occur ( Θij

* ), which is a subset of Θij
* , and given by

Θij
*  = {Wij : Wij Θij

* , Wijk < Wijl   
for all k < l ≤ nij where Wijk and Wijl ≠ 0 }. (4)

Equation 4 states that the elements of Θij
*  are comprised of 

combinations of Wij such that the arrival time order of the phase 
labels is established a priori and the order given by Wij, with the 
phase labeled as 1 arriving before 2, 2 before 3, etc. The null phase 
label is exempt from arrival time order constraint. 

A priori phase-label probability is determined jointly for 
each set of event/station observations Wij.

 (5)

where Zij is a normalizing constant and fijk is the prior probability 
of a given phase label conditional on the input phase label. We 
see from equation 5 that the probability of any phase configura-
tion Wij is computed by multiplying the marginal probabilities of 
the individual members of the set Wij and normalizing across all 
viable possibilities. Note that the probability is zero if the set Wij 
violates the a priori arrival-time order. 

The a priori probability of each element of Wij (fijk) is deter-
mined by

   (6)

where π is the (user-provided) prior probability that the input phase 
label is correct, η is the (user-provided) prior probability that if 
the input phase label is incorrect then the true phase label is null, 
and M is the number of phases under consideration. The first two 
options in equation 6 define prior probability that the true phase 
label is the input phase label or the null phase label, respectively. 
What remains is the probability that the true phase label is a valid 
phase, but not the input phase label. The third option in equation 6 
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evenly distributes this remaining phase label probability over the 
set of valid phase labels under consideration.

The functionality of the η parameter in equation 6 is best 
described by example. If ηijk is 1 (not an advisable choice) then 
the only phase labels considered are the input label and the null 
label. Setting ηijk to 0.5, implies that if the input phase label is 
incorrect, then the remaining probability is divided between the 
null phase and the set of all other remaining phase labels under 
consideration (excluding the input phase label). Using equation 6 a 
value of ηijk can be selected such that the probability that the input 
phase is not correct (1- πijk ) is evenly distributed over all other 
phase labels, including null. It is also straightforward to select 
both πijk and ηijk such that prior probability is evenly distributed 
across all possible phase labels – including the input phase label, 
thus ignoring the provided phase label. 

Markov-Chain Monte Carlo (MCMC) Inversion

Using equation 1 allows the computation and comparison of 
the joint probability for two states of the multiple-event system, 
which enables application of the well-developed MCMC inversion 
methodology. In practice MCMC is used to generate realizations 
from the joint posterior distribution of all multiple-event model 
parameters; event locations, travel-time corrections, etc, and post-
processing is used to summarize the samples by plotting point 
density or by averaging point populations to determine conven-
tional hypocenter parameters. As the name implies, MCMC is 
Markovian in nature, and a new sample point (x*) is conditionally 
generated based upon the current sample point (x), using a transi-
tion kernel K(x, x*) determined by a specified target probability 
distribution p(x), which ultimately yields a chain of sample points; 
x1, x2, ..., xN (or samples) mentioned previously. A sufficient condi-
tion for the transition kernel to produce a sample from p(x) is that 
it satisfies the detailed balance condition, p(dx)K(x,dx*) = p(dx*)
K(x*,dx) (e.g., Robert and Casella, 2004). The detailed balance con-
dition stipulates that the chain has the same probability (density) of 
moving from x to x* as it does to move from x* to x. If the detailed 
balance condition is satisfied, the target distribution p(x) is invari-
ant to the transition kernel K(x, x*), meaning that if x is known to 
be a valid realization from p(x), then x* sampled from K(x, x*) is 
also a valid realization from p(x). The detailed balance condition 
is the theoretical backbone of MCMC that ensures generation of 
valid samples from the distribution p(x). Because the starting con-
figuration generally includes sampling from broad distributions on 
parameters for which little or no prior information is available, the 
influence of the starting values is reduced by discarding samples 
from an initial ‘burn-in’ period. Further details on the use of MCMC 
in Bayesian settings can be found in Tarantola (2004), Gelman, et 
al. (2004), and Robert and Casella (2004).

The Bayesloc hierarchical model lends itself to an efficient 
transition kernel. The simplest transition kernel, random samples 
for each model parameter, can be highly inefficient. A set of in-
dependent, random proposals for each parameter is likely to be 
jointly rejected based on low probability of equation 1. Therefore, 
we resort to random walk sampling only when absolutely neces-
sary. The event locations themselves cannot be analytically derived 
from the other parameters, and therefore require random-walk 
sampling. However, the hierarchical approach promotes efficient 

realization of the remaining parameters (origin times, travel-time 
model parameters, and arrival-time precision parameters, and 
phase labels) by way of conditional sampling based upon a given 
configuration of event locations. 

A single MCMC iteration is accomplished by first sampling 
each location using a Metropolis random walk (MRW), then pro-
gressively sampling additional parameters using either the Gibbs 
sampler (GS) (e.g. Gelman et al., 2004) or the slice sampler (SS) 
(e.g. Neil, 2003; Robert and Casella, 2004). 

Examples
Testing in a geothermal setting is underway. As an example 

of the location improvement we show a case study of events with 
known locations at distances of several hundred km. This differs 
from typical geothermal field but the overall methodology will 
be similar. The data set includes 74 nuclear explosions with (for 
seismic location purposes) perfectly known hypocenters (Walter 
et al., 2004). 

Figure 1 presents epicenter errors for 3 test cases: single-event 
location (Figure 1a), a multiple-event location algorithm that is 
similar to Jordan and Sverdrup (1983) (Figure 1b), and Bayesloc 
(Figure 1c). The single-event location results show considerable 
scatter with a mean location error of 3.12 km. The Jordan and 
Sverdrup (1983) multiple-event location method results in precise 
relative locations, but all epicenters are biased. The bias causes 
a degradation of location accuracy compared to the single-event 
locations, with a mean epicenter error of 3.19 km. The Bayesloc 
locations (Figure 1c) are unbiased, due to Bayesloc’s robust travel 
time correction model, and the large location outliers are elimi-
nated because inconsistent arrival-time data are down weighted. 
The mean epicenter error for Bayesloc is 1.51 km. 

An example of the MCMC scatter plot of epicenter solutions 
and the associated point density is shown in Figure 2. The known 
location is plotted at the origin. Two distinct modes (regions of 
peaked sample density) are found. Linearized location algorithms 
would converge to either mode and the uncertainty estimate would 
– at best – represent the error of one mode. Bayesloc identifies 
that two modes exist, each with approximately equal probability. 

37.0° N

37.25° N

25 km

116.5° W 116.0° W

a) b)

c)
116.5° W 116.0° W

37.0° N

37.25° N

Figure 1. Known epicenters and those determined using the iasp91 starting 
model and: a) a grid-search single event locator, b) a multiple-event loca-
tor similar to Jordan and Sverdrup (1981), c) Bayesloc. A line connects the 
known location (star) to the estimated epicenter in each test case (circle). 
Modified from Myers et al., 2009.
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Figure 2b shows the hypocenter samples that are color coded by 
different phase configurations. The red samples comprise the 
western mode, which consists of the phase labels provided by the 
analyst. Bayesloc finds two alternative phase label configurations 
that comprise the eastern mode, and the eastern mode is in agree-
ment with the known location.  

Myers et al., (2007) count the number of known event locations 
inside the 50%, 75%, and 95% epicenter probability contours for 
the NTS relocations. Indeed, the number of ground truth epicenters 
within the specified probability region agrees with the estimated 
probability percentile, within expected deviations. This finding is 
arguably the most novel for a multiple-event location algorithm, as 
other methods that use linear solvers (Geiger, 1912; Flinn, 1964; 
Evernden, 1969; Waldhauser and Ellsworth, 2000) notoriously 
underestimate error.

Figure 3 presents results of a phase-labeling test case where 
30% of the arrival-time data are corrupted by adding a random 
error drawn from the flat distribution with bounds of ±100 seconds. 
While the percentage of corrupted data in this test case is extreme, 
the test demonstrates robustness to data errors. Other methods 
require user intervention to remove outlier data and correct phase 

labeling mistakes. Otherwise, a few outliers can corrupt the entire 
multiple-event solution. Note that the event hypocenters where 
determined simultaneously in this test case, and the posteriori data 
fit the empirical travel times that were developed using the known 
hypocenter coordinates (right side of Figure 3). 

Conclusions

Accurate location of micro-seismic events 
is critical to mapping the fracture networks 
that result from geothermal injection and 
stimulation. We are adapting the Bayesloc 
multiple-seismic-event location method for 
optimal application to geothermal studies to 
achieve accurate locations with representa-
tive uncertainty estimates. Bayesloc has been 
applied to regional and global data sets, and 
results have been validated using ground-truth 
locations. Accurate locations are the result of 
the Bayesloc travel time correction model that 
mitigates the location bias that is endemic to 
multiple-event methods. Arrival-time mea-
surement errors are simultaneously assessed 
during the Bayesloc procedure, so that data 
fit is properly weighted and uncertainties are 
properly propagated throughout the multiple-
event system. Realistic location uncertainty 
can guide end users to trust some locations and 
not others. Realistic uncertainty also enables 
formal hypothesis tests as to whether the loca-

tion results are consistent with the expect fracture pattern for a 
given enhancement strategy.

Modification of Bayesloc for optimal application to geothermal 
data sets is underway. The current travel time correction model 
exploits characteristics of wave propagation that are applicable to 
network stations at distances greater than ~100 km. The optimal 
travel time correction formulation for geothermal data sets will 
require a term that better accounts for the non-linearity between 
event depth and residuals at local event-station distances. We also 
plan to incorporate the direct input of relative arrival times that 
are based on waveform cross-correlation. In the short term we can 
adopt the common practice (e.g. Rowe et al., 2002) of stacking 
waveform traces for highly correlated seismograms, making an 
arrival-time measurement on the seismogram stack, then migrating 
the arrival time measurement based on the correlation time lags. 
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2009.
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