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ABSTRACT

Double-difference waveform inversion is a promising tool for 
quantitative monitoring for enhanced geothermal systems (EGS). 
The method uses time-lapse seismic data to jointly invert for res-
ervoir changes. Due to the ill-posedness of waveform inversion, 
it is a great challenge to obtain reservoir changes accurately and 
efficiently, particularly when using time-lapse seismic reflection 
data. To improve reconstruction, we develop a spatially-variant 
total-variation regularization scheme into double-difference 
waveform inversion to improve the inversion accuracy and 
robustness. The new regularization scheme employs different 
regularization parameters in different regions of the model to 
obtain an optimal regularization in each area. Utilizing a spatially-
variant regularization scheme, the target monitoring regions are 
well reconstructed and the image noise is significantly reduced 
outside the monitoring regions, and the results are significantly 
better than those obtained obtained using a constant regulariza-
tion parameter. Our numerical examples demonstrate that the 
spatially-variant total-variation regularization scheme provides 
the flexibility to regularize local regions based on the a priori 
spatial information without increasing computational costs and 
the computer memory requirement. 

1. Introduction

Quantitative monitoring for enhanced geothermal systems 
can help optimize the geothermal production and the placement 
of new wells. Conventionally, reservoir changes are obtained 
from differences of independent inversions of time-lapse data. 
Full-waveform inversion is a quantitative method for estimating 
subsurface geophysical properties. It can be implemented in both 
the time domain (Tarantola,1984; Mora, 1987) and the frequency 

domain (Pratt et al., 1998; Sirgue and Pratt, 2004). In recent years, 
many new full-waveform inversion schemes were developed based 
on regularization (Hu et al., 2009; Burstedde and Ghattas, 2009; 
Ramirez and Lewis, 2010), a priori information (Ma et al., 2010), 
preconditioning (Guitton and Ayeni, 2010; Tang and Lee, 2010), 
and dimensionality reduction (Moghaddam and Herrmann, 2010). 
Images of the conventional approach for time-lapse seismic data 
usually contain significant noise and artifacts, and the values of 
changes in geophysical properties are not accurate. Watanabe et 
al. (2004) proposed a differential waveform tomography method 
in the frequency domain for time-lapse crosswell seismic data, 
and clearly showed its improvement compared to the conventional 
method. Denli and Huseyin (2009) introduced a double-difference 
elastic-waveform tomography method in the time domain for 
time-lapse surface seismic reflection data. These methods jointly 
invert time-lapse seismic data for reservoir changes.

To further improve the accuracy and robustness of double-
difference waveform inversion, we develop a spatially-variant 
total-variation regularization scheme in combination with a 
priori spatial information. Regularization is often used in inverse 
problems (Vogel, 2002; Tarantola, 2005). The most often used 
methods are L2 norm based regularization (Tikhonov, 1963) and 1 
norm based regularization (total variation or compressive sensing). 
It has been proved that the spatially-variant regularization 
can improve inversion results for medical imaging and image 
restoration (Strong, 1997; Guo and Huang, 2009). We introduce 
the spatially-variant total-variation regularization scheme 
into double-difference full-waveform inversion. We solve the 
minimization of the misfit function using the block coordinate 
descent (BCD) scheme (Bertsekas, 1999) in combination with 
the nonlinear conjugate gradient (NCG) approach (Nocedal and 
Wright, 2000). The gradient of the misfit function is obtained using 
an adjoint method (Tarantola, 1984; and Tromp et al., 2005). We 
use a synthetic time-lapse seismic data for a Brady’s EGS model 
to verify the advantages of the spatially-variant regularization 
scheme for double-difference waveform inversion. Our results 
demonstrate that the new method produces more accurate results 
of reservoir changes compared to those obtained using a constant 
regularization parameter.
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2. Theory
2.1  Full-Waveform Inversion

The acoustic-wave equation in the time-domain is given by 
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where ρ(r) is the density, K(r) is the bulk modulus, s(t) is the 
source term, r 0 is the source location, and p(r,t) is the pressure 
field. The forward modeling using equation (1) can be written as 
p = f (K,ρ,s),  (2)

where the function of f is a given nonlinear operator. Numerical 
techniques such as finite-difference and spectral-element methods 
can be used to solve (2). Let m be the model parameters, equa-
tion (2) becomes 
p = f (m).  (3)

The inverse problem of equation (3) is usually posed as a 
minimization problem such that 

E(m) =min
m
||d− f (m) ||2

2{ },   (4)

where E(m) is the misfit function, ⏐⏐ ⋅ ⏐⏐2 stands for the L2 norm, 
and d represents recorded waveforms. The minimization opera-
tion in equation (4) is to find a model m that yields the minimum 
difference between observed and synthetic waveforms.

2.2  Double-Difference Waveform Inversion

Conventionally, two independent inversions in (4) are carried 
out to obtain the time-lapse changes in reservoir, that is 

δmconv = f
−1(dtime 2 )− f

−1(dtime 1),   (5)

where f-1 means the general inverse of waveform data, and dtime 1 
and dtime 2 are data collected at two different times. 

For double-difference waveform inversion, the data misfit in 
the cost function (4) is replaced by 

δd ≡ (dtime 2 −dtime 1)− (dsim_ time 2 −dsim_ time 1),        (6)

where the first term is the time-lapse difference in data, and the 
second term is the difference in synthetic time-lapse data. The 
method uses time-lapse seismic data to jointly invert for changes 
in reservoir geophysical properties.

3. Spatially-Variant Total-Variation Regularization
3.1  Total-Variation Regularization

Total-variation (TV) regularization is one regularization 
technique widely used in image processing. The advantage of 
using TV is its edge-preserving capability. The misfit function 
for the TV scheme is 

E(m) =min
m

d− f (m) 2
2+λ ∇m 1{ } with λ > 0,      (7)

where λ is the regularization parameter.

3.2 Spatially-Variant TV Regularization
Another equivalent form of the TV regularization in equa-

tion (7) is given as a constrained minimization problem, that is, 

,
  (8)

where the parameter ε plays the same role as λ in (7) to control 
the degree of regularization of the desired solution.

To incorporate the spatial information into (8), we modify 
(8) as 

,
  (9)

where Ωi is a spatial region, and εi is a spatially-variant parameter.
To incorporate the initial model, equation (9) is modified as 

,
 (10)

where m0 is the initial model. The a priori information about the 
spatial characteristics of the model is used to determine spatial 
regions Ωi.

3.3 Spatial A Priori Information
A priori information plays an important role in the inverse 

problems. The usage of a priori information is usually to avoid 
the instability during the inversion of data (Tarantola, 1984). It 
can be some reasonable initial guess of the solution, the smooth-
ness of the desired reconstruction or the spatial information on 
the solution. In general, the a priori information is functioning 
as a guide to the true solution. In our work, we utilize both the 
spatial information and smoothness of the desired model as our 
a prior information. 

There are different methods to incorporate the a prior in-
formation into inversion algorithms (Ma et al., 2010). We use 
regularization techniques in combination with the a prior infor-
mation.

For the inverse problem based on equation (10), we need to 
know both the initial model m0 and spatial regions Ωi. The start-
ing model m0 may be obtained from ray tomography. Waveform 
inversion is the combination of migration and tomography (Mora, 
1989). Migration yields the shapes (or edges) of the anomalies 
and can be obtained in the first a few iterations during inversion. 
Therefore, these migration-like results can provide the informa-
tion about the spatial regions Ωi  For double-difference waveform 
inversion, the target monitoring regions are the a priori informa-
tion to be used.

4. Numerical Algorithm and Implementation
4.1 Total-Variation Solver

Many numerical TV solvers have been proposed for solving 
(7) (Li and Santosa, 1996; Vogel and Oman, 1996, 1998; Wohlberg 
and Rodriguez, 2007). We choose the one proposed in (Vogel 
and Oman, 1998) because of its efficiency and simplicity. A 
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small constant β is usually added to the TV term to enable the 
differentiability of the L1 norm at the origin, i.e. 

TV(m) = ∇m 1≈ (D jm)
2 +β 2

j=1

n

∑ ,   (11)

where the spatial derivative  Djm = m ( j+1) - m(j) for the spatial 
grid index j, and n is the total number of spatial grid points. The 
gradient of the TV term with respect to m can be further expressed 
using the divergence operator: 

∇mTV(m) = −∇·
∇m
∇m 1

.   (12)

Therefore, a gradient-based line search algorithm can be 
performed once the gradient of the TV term is computed. 

4.2 Optimization Algorithm for Spatially-Variant  
TV Regularization

Equation (10) is the object function for our spatially-variant 
TV regularization scheme. It can be solved by converting it into 
an equivalent non-constrained expression. Using the Lagrange 
multiplier (Nocedal and Wright, 2000), we have 

E(m) =min
m

d− f (m) 2
2+ λi

i
∑ ∇[mi − (m0 )i] 1

⎧
⎨
⎩

⎫
⎬
⎭

with λi > 0, and mi ∈  Ωi
,     

(13)

The role of λi’s is the same as εi’s in (10) to regularize the 
reconstruction. 

We employ a nonlinear conjugate gradient (NCG) line search 
approach (Noceda and Wright, 2000) to solve equation (13). We 
use the block coordinate descent (BCD) approach that has been 
proved to be efficient for such a situation (Bertsekas, 1999; Wu 
and Lange, 2008; Li and Osher, 2009). 

4.2.1  Block Coordinate Descent
Analogous to the Gauss-Seidel matrix solver in optimization, 

BCD partitions the coordinates into N blocks, and improves the 
estimation of the solution in each block by minimizing along 
one direction with all the other blocks fixed. The order in which 
the blocks are visited is called “sweep pattern.” The order of the 
blocks visited does matter in the BCD algorithm. In our algorithm, 
we use a “cyclic pattern,” which means all the blocks are visited 
sequentially. It has been illustrated that different visiting orders 
lead to different convergence rates of the algorithms (Wu and 
Lange, 2008; Li and Osher, 2009). 

To ensure the convergence as in the line search algorithm, the 
search direction λk along each block needs to be a descent direc-
tion. In the other words, for the function E(m), λk needs to satisfy 

cosθ = ∇Ek
Tγ k

∇Ek γ k
< 0,   (14)

where θ is the angle between the search direction and Ek. We 
use the conjugate-gradient direction as the search direction for 
each block. 

After obtaining the search direction for a particular block, 
the line search with the Armijo criteria is further utilized for 
the optimal step size. We then update the block with the search 
direction and its step size without affecting other blocks: 

mi
k+1 =mi

k +αi
kγ i
k ,  (15)

where the superscript stands for the iteration number and the 
subscript stands for the block index.

4.2.2 Nonlinear Conjugate Gradient
The search directions in BCD are calculated from nonlin-

ear conjugate gradients, as illustrated in (Nocedal and Wright, 
2000). The method to incorporate BCD with NCG is to replace 
the updating of the entire model with equation (15) (see Step 3 
in Algorithm 1).
Algorithm 1 Canonical NCG to solve min ( )E

m
m

Input: m0, TOL

Output: 
km

  1: Initialize 0k = , 0 0( )E E= m , ∇E0 =∇E(m0 ) ;

  2: While ||∇Ek ||> TOL  do

  3: Compute α k and update the solution mk+1 =mk +α kγ k ;

  4: Evaluate ∇Ek+1 ;

  5: β k+1 =
<∇Ek+1,∇Ek+1 >
<∇Ek ,∇Ek >

;

  6: γ k+1 = −∇Ek+1+β k+1γ k ;

  7: k← k +1 ;
  8: end while

5. Numerical Results

We use synthetic time-lapse surface seismic data for the models 
in Fig. 1 to demonstrate the improvement of the double-difference 
waveform inversion with a spatially-variant TV regularization 
scheme. The models are constructed using geologic features 
found at the Brady’s EGS site. They contain several steep fault 
zones. There is a region in Fig. 1b with a decreased velocity due to 
water/fluid injection for stimulation, as shown in Fig. 1c. Twenty 
common-shot gathers of synthetic time-lapse seismic data with 
500 receivers at the top of the models are used to jointly invert for 
the reservoir change. The shot interval is 125 m and the receiver 
interval is 5 m. A Ricker wavelet with a center frequency of 25 Hz 
is used as the source function. 

Figure 2 demonstrates the improvement of waveform inversion 
using the TV regularization for the baseline model. The figure 
shows the differences between the reconstructed models and the 
starting model, and the true difference between the starting model 
and the baseline model. The result with the TV regularization in 
Fig. 2c shows the better reconstruction in the entire model, particu-
larly in the deep region of the model that cannot be reconstructed 
without using any regularization.
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For comparison, we obtain the velocity change in the target 
monitoring region using the conventional approach by subtract-
ing the two independent inversions and the double-difference 
waveform inversion with a constant regularization parameter. The 
result of the conventional approach in Fig. 3 contains significant 
image artifacts. The vertical profile in Fig. 3b shows that the re-
constructed velocity change in the target region is approximately 
-200 m/s, significantly different from the true value of -320 m/s. 
In addition, it contains significant image noise above and below 
the target monitoring region.

Figure 4 shows the result of double-difference waveform inver-
sion with a constant regularization parameter λ = 1.0 × 10-13. The 
reconstructed velocity change in the target region is approximately 
-265 m/s, which is closer to the true value of -320 m/s compared to 
that obtained using the conventional approach (Fig. 3b). Figure 4 
contains fewer noise than Fig. 3.

In order to incorporate the a priori spatial information into 
the spatially-variant TV regularization scheme for double-dif-
ference waveform inversion, we determine the target monitoring 
regions using the result of the first a few iterations. There are 

two regions in equation (13) for our time-
lapse models in Fig.1, one within the target 
monitoring region, and the other outside the 
target monitoring region. The regularization 
parameter utilized for the target monitoring 
region is λ in = 1.0 × 10-13, and λout = 1.0 × 10-10 
for the other region. Figure 5 shows the result 
of double-difference waveform inversion with 
a spatially-variant regularization parameter. 
The reconstructed velocity change in the target 
monitoring region is close to the true value of 
-320 m/s. Figure 5 contains significant fewer 
image artifacts outside the target monitoring 
region compared to Fig. 3 and Fig. 4.

The computational cost of the dou-
ble-difference waveform inversion with a 
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Figure 1. The baseline velocity model (a) and the time-lapse velocity model (b) that contains a region with a decreased velocity shown in (c) due to fluid 
injection for stimulation. The models contain several steep fault zones. They are constructed using geologic features found at Brady’s EGS site.

(a) Baseline model at time 1. (b) Time-lapse model at time 2 (c) Time-lapse difference
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Figure 2. (a) The difference between the starting model for waveform inversion and the true baseline model. (b) The difference between the reconstructed 
model obtained without any regularization and the starting model. (c) The difference between the reconstructed model obtained with TV regularization and 
the starting model. The result in (c) is clearly better than that in (b), particularly in the deep region of the model.

(a) True baseline difference (b) Reconstruction of the difference  
without regularization

(c) Reconstruction of the  
difference with TV
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Figure 3. The difference (a) of two independent inversions of synthetic time-lapse seismic data for 
the models in Fig. 1 together with a vertical profile (b) at the horizontal position of 1250 m of the 
result in (a). The red line in (b) shows the true velocity change, and the blue line is the difference of 
two independent inversions.
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spatially-variant TV regularization parameter is comparable to 
that with a constant regularization parameter.

6. Conclusions

We have developed a spatially-variant TV regularization 
scheme for double-difference waveform inversion. The method 
employs different regularization parameters in different regions 
in space in combination with the spatial a priori information, or 
the target monitoring regions. It uses the block coordinate descent 
and nonlinear conjugate gradient schemes to solve the minimiza-
tion problem. Our results of synthetic time-lapse seismic data for 
the Brady’s EGS models demonstrate that our new method can 
reconstruct accurate values of velocity changes due to water/fluid 
injection for geothermal stimulation. The new method can pro-
duce images of reservoir changes with much fewer image artifacts 
than those obtained using double-difference waveform inversion 
with a constant regularization parameter. The double-difference 
waveform inversion with the spatially-variant total-variation 
regularization can quantify the spatial and temporal changes 
in reservoirs of enhanced geothermal systems using time-lapse 
seismic data.
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(a) Reconstructed velocity difference (b) A vertical profile of the result in (a)
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Figure 4. The result of double-difference waveform inversion with a constant regulariza-
tion parameter λ= 1.0 × 10-13 together with a vertical profile at the horizontal position of 
1250 m. The red line in (b) shows the true velocity change, and the blue line is the result of 
double-difference waveform inversion with a constant regularization parameter.

Figure 5. The result of double-difference waveform inversion with a spatially-variant regu-
larization parameter together with a vertical profile at the horizontal position of 1250 m. 
The red line in (b) shows the true velocity change, and the blue line is the result of double-
difference waveform inversion with spatially-variant TV regularization.
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