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ABSTRACT

We have undertaken a thorough inventory of the structural 
settings of known geothermal systems (>400 total) in the exten-
sional to transtensional terrane of the Great Basin in the western 
USA.  Of the more than 200 geothermal fields catalogued to date, 
we found that step-overs or relay ramps in normal fault zones 
served as the most favorable structural setting, hosting ~32% of 
the systems.  Such areas are characterized by multiple, commonly 
overlapping fault strands, increased fracture density, and thus 
enhanced permeability.  Other common settings include a) inter-
sections between normal faults and either transversely oriented 
strike-slip or oblique-slip faults (22%), where multiple minor 
faults typically connect major structures and fluids can flow readily 
through highly fractured, dilational quadrants, and b) normal fault 
terminations or tip-lines (22%), where horse-tailing generates a 
myriad of closely-spaced faults and thus increased permeabil-
ity.  A major subset of fault intersections includes displacement 
transfer zones (5%) between strike-slip faults in the Walker Lane 
and N- to NNE-striking normal faults, with geothermal systems 
commonly focused along the normal faults proximal to their 
dilational intersections with nearby dextral faults.  Other notable 
structural settings for geothermal systems in the Great Basin 
include accommodation zones (i.e., belts of intermeshing, oppo-
sitely dipping normal faults; 8%), major range-front faults (3%), 
salients or apices of major normal faults (3%), and pull-aparts 
in strike-slip fault systems (4%).  Pull aparts and displacement 
transfer zones are more abundant within or along the margins of 
the Walker Lane, whereas step-overs and accommodation zones 
in normal fault systems are more prevalent within the extensional 
terrane that characterizes much of the Great Basin northeast of the 
Walker Lane.  In addition, Quaternary faults typically lie within 
or near most of the geothermal systems.  However, geothermal 
systems appear to be rare along the displacement-maxima zones 

or mid-segments of major normal faults (i.e., major range-front 
faults), possibly due to both reduced permeability in thick zones 
of clay gouge and periodic release of stress in major earthquakes.  
Step-overs, terminations, intersections, and accommodation zones 
in normal fault systems would tend to correspond to long-term, 
critically stressed areas, where fluid pathways would more likely 
remain open in networks of closely-spaced, breccia-dominated 
fractures.  It is also important to note that many of the higher 
enthalpy systems are characterized by more than one type of 
favorable setting at a single locality (e.g., Steamboat, Brady’s, 
and Salt Wells).  

Introduction

As stated in the Department of Energy (DOE) Geothermal 
Technologies Program Multi-year Research, Development, and 
Demonstration (MYRDD) Plan (p. 40), “the best EGS targets 
have high temperatures (> 200°C) at shallow depth (< 3 km) 
and a tectonic stress regime that keeps fractures open.  Current 
technology cannot identify such sites with a high degree of 
certainty without drilling.”  Two major problems described in 
the MYRDD are 1) Barrier A, whereby “the ability has not been 
sufficiently demonstrated to assess potential EGS resources, 
prioritize potential sites for EGS, and achieve acceptable levels 
of site selection risk ahead of  expensive drilling investments;” 
and 2) Barrier B, whereby “inadequate measuring techniques and 
knowledge preclude low-risk options to effectively select sites 
and characterize their physical parameters as potential EGS res-
ervoirs before stimulation”.  Resolution of these barriers requires 
new and improved geological, geochemical, and geophysical 
techniques to find shallow hot rock and favorable crustal stress 
conditions where there is no surface manifestation.  Even for 
conventional systems with surface manifestations, improved 
techniques are needed to locate the best sites for drilling into a 
sustainable subsurface reservoir.  

In essence, the geothermal industry generally lacks a strong 
empirical database that qualitatively and quantitatively describes 
the most favorable settings for geothermal activity.  Some gen-
eralized catalogues exist (e.g., Hurter and Haenel, 2002; Akkuş 
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et al., 2005), but relatively little has been accomplished in data 
synthesis. Thus, robust conceptual models and favorable settings 
are generally not well defined and/or their broad applicability 
has not been well tested.  The success of the best modelling 
techniques is limited without basic knowledge of which fault 
and fracture patterns, stress conditions, and stratigraphic in-
tervals are most conducive to hosting geothermal reservoirs in 
various settings.  The risk of drilling non-productive wells in a 
conventional system or a failed EGS experiment can therefore 
be high and impede further exploration.  Better characteriza-
tion of known geothermal systems in different settings (e.g., 
magmatic vs. nonmagmatic; transtensional vs. extensional) is 
therefore critical in discovering new systems, targeting the best 
drilling sites, and enhancement (EGS) or expansion of known 
systems.  This is especially important in the Great Basin of the 
western USA, where the bulk of the geothermal resources may 
have little or no surface manifestation (i.e., blind or hidden; 
Coolbaugh et al., 2006a).  

We are, therefore, systematically assessing the 
structural controls of geothermal systems within the 
Great Basin and adjacent regions.  Most of the geo-
thermal systems in the Great Basin are not related to 
obvious magmatic heat sources, but are instead fault-
controlled.  In the western part of the Great Basin, 
the Walker Lane is a system of dextral faults that ac-
commodates ~20% of the motion between the North 
American and Pacific plates (Kreemer et al., 2009).  
As the Walker Lane terminates northwestward in 
northwest Nevada-northeast California, about 1 cm/
year of dextral motion diffuses into WNW-directed 
extension in the northwestern Great Basin.  Enhanced 
extension and dilation within the northwestern Great 
Basin probably accounts for the abundance of fault-
controlled geothermal activity in this region (Faulds et 
al., 2004).  Identifying the favorable structural settings 
is particularly critical in amagmatic settings, such as 
most of the Great Basin, but also relevant to many 
systems with a magmatic heat source. 

This DOE-ARRA (American Recovery and Rein-
vestment Act)-funded study consists of three discrete 
stages, which are an initial structural inventory, sub-
sequent detailed study of representative fields, and 
finally 3D modeling of select systems.  The ultimate 
goal of this project is to incorporate knowledge of 
favorable structural settings into refining exploration 
strategies and reducing the risks of geothermal drilling, 
particularly for blind or hidden geothermal systems.  

Here, we report on the first phase of this project, 
which involves a broad but thorough inventory of 
structural settings of geothermal systems in the Great 
Basin, Walker Lane, and southern Cascades, with 
the aim of developing a structural catalogue and 
set of structural models of geothermal systems that 
documents the most favorable structural environments.  
Although the results in this paper should be considered 
preliminary, they may nonetheless facilitate both ongo-
ing exploration in the region and selection of drilling 
sites within individual geothermal fields. 

Previous Work

Substantial previous work on the structural controls of geo-
thermal systems in the Great Basin and elsewhere has enabled 
this research.  It has long been known that individual fields are 
commonly controlled by moderately to steeply dipping normal 
fault zones, as exemplified at the Dixie Valley (Blackwell et al., 
1999; Johnson and Hulen, 2002; Wannamaker, 2003), Rye Patch 
(Waibel et al., 2003), Brady’s, and Desert Peak fields (Figure 1) 
(Benoit et al., 1982; Faulds et al., 2010).  Our initial regional 
assessment of structural controls in the Great Basin showed that 
N- to NE-striking faults (N0oE-N60oE) are the primary control-
ling structure for ~75% of the fields, and this control is strongest 
for higher temperature systems (Coolbaugh et al., 2002; Faulds 
et al., 2004).  In the northwest Great Basin, the NNE-striking 
controlling faults are oriented approximately orthogonal to the 
crustal extension direction.  

DV

Br-DP

RP

Figure 1. General representation of geothermal systems in the Great Basin, as portrayed 
prior to this project (from Faulds et al., 2004). Yellow circles are systems with maximum 
temperatures of 100-160oC; red circles have maximum temperatures >160oC.  BRD, 
Black Rock Desert geothermal belt; ECSZ, eastern California shear zone; HSZ, Humboldt 
structural zone; SD, Sevier Desert belt; SV, Surprise Valley belt; WLG, Walker Lane belt.  
Abbreviations for individual fields: Br-DP, Brady’s-Desert Peak; DV, Dixie Valley; RP, Rye 
Patch.
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However, NNE-striking normal faults abound in the Great 
Basin, and many show no signs of geothermal activity.  Thus, 
it is important to determine which faults or which segments of 
individual faults are most likely to host geothermal activity.  In 
an effort to better characterize structural controls on geothermal 
activity in extended terranes, we have therefore analyzed numer-
ous fields in the western Great Basin (USA) and western Turkey 
through integrated geologic and geophysical investigations 
(Faulds et al., 2004, 2005, 2006, 2010; Faulds and Garside, 2003; 
Faulds and Melosh, 2008; Vice et al., 2007; Hinz et al., 2008, 
2010, this volume; Rhodes et al., 2010).  Methods have included 
detailed mapping, structural analysis, gravity surveys, studies of 
surficial geothermal features (e.g., travertine, sinter, springs, and 
fumaroles; Coolbaugh et al., 2006b), shallow temperature surveys 
(Coolbaugh et al., 2007), and geochemical analyses.  

Our findings suggest that many fields occupy a) discrete steps 
in normal fault zones, b) intersections between normal faults 
and transversely oriented oblique-slip faults, c) overlapping op-
positely dipping normal fault zones, d) terminations of major 
normal faults, or e) transtensional pull-apart zones (Figure 2).  
All of these settings are typically associated with steeply dipping 
faults, most commonly involving subvertical conduits of highly 
fractured rock along or near Quaternary fault zones oriented ap-
proximately perpendicular to the least principal stress.  General 
topographic features indicative of these settings include: 1) major 
steps in range-fronts, 2) interbasinal highs, 3) mountain ranges 
consisting of relatively low, discontinuous ridges, and 4) lateral 
terminations of mountain ranges.  Surficial features, such as tufa 
towers, travertine spring mounds, and sinter deposits, are also as-
sociated with many systems.  These structural, topographic, and 
surficial features may indicate hidden or blind geothermal fields, 
which have no surface thermal waters or steam (i.e., hot springs, 
fumaroles, or geysers).  

Our findings are compatible with the conclusions of Curewitz 
and Karson (1997) and Micklethwaite and Cox (2004).  In a global 
survey, Curewitz and Karson (1997) found that hot springs are 
generally concentrated near the ends of faults or at fault intersec-
tions.  Micklethwaite and Cox (2004) found that zones of high 
permeability in fault systems correspond to paleo-rupture arrest 
areas at the ends of fault segments.  The rupture-arrest regions 
mark areas of aftershocks and multiple interconnecting fault 
splays, where fluid flow is favored.  In normal fault systems, these 
rupture arrest regions commonly correspond to discrete step-overs 
in fault zones or reversals in the dominant dip direction of systems 
of faults (Roberts and Jackson, 1991; Faulds and Varga, 1998).  
Such rupture arrest regions may also account for high-permeability 
flow paths occurring in spatially discrete but negligible overall 
fractions of individual faults, as documented in the Borax Lake 
geothermal field in southern Oregon (Fairley and Hinds, 2004).  

It is noteworthy that magmatic systems like those in Iceland 
are also controlled by tensional fractures (Gudmundsson, 2000).  
However, dilational fault segments (i.e. faults with low normal 
stress) are not the only type of conduit for hydrothermal systems.  
In some fields, like the EGS site at Coso, critically stressed faults 
(faults with high shear stress) can also control fluid flow (Sheridan 
and Hickman, 2004). 

Although a variety of structural settings has been documented 
for geothermal systems in extensional terranes and conceptual 

models developed for some of these settings, no general synthesis 
has been completed that describes which settings are most favor-
able for geothermal activity.  Thus, it is difficult to determine the 
likelihood of finding a geothermal system in a particular structural 
setting or determine the risk of drilling in a particular location even 
within a known geothermal field, as that field might contain more 
than one type of structural feature.  Our results below represent a 
first attempt to catalogue >400 geothermal systems in the Great 
Basin based on structural setting.  

Database

An initial database of geothermal systems in the Great Basin 
was taken from Coolbaugh (2003), who used it to evaluate rela-
tionships between geothermal activity and geospatial data such 
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Figure 2. Examples of favorable structural settings for geothermal systems.  
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(accommodation zones) that generate multiple fault intersections in the 
subsurface.  Strike and dip symbols indicate tilt directions of fault blocks.  
D. Dilational fault intersection between oblique-slip normal faults.  
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as young fault orientations and crustal strain rates and generate 
predictive maps of geothermal potential for Nevada (Coolbaugh 
et al., 2002; Coolbaugh, 2003) and the Great Basin (Coolbaugh 
et al., 2005). Coverage of the initial database was limited to the 
confines of the Great Basin as defined by Fenneman (1928), with 
a 70-km-wide buffer added. The buffer made possible the evalu-
ation geothermal activity in the geologically complex margins 
of the Great Basin, which hosts a number of magmatic heated 
geothermal systems (e.g. Coso, Mammoth, Mt. Lassen, and Mt. 
Shasta in California; Newberry Crater in Oregon, Roosevelt Hot 
Springs in Utah, and arguably, Steamboat Springs in Nevada 
(Arehart et al., 2003)).

For the purposes of the database, a geothermal system was 
defined as the occurrence of hot water either in springs or wells 
at temperatures of at least 37°C. Multiple hot springs and/or hot 
wells were grouped into individual “geothermal systems” and 
a central point was chosen to represent the loci of springs and 
wells. A minimum 10-km-distance between geothermal systems 
was required; otherwise the data points were considered part of 
the same geothermal system, unless geothermal production well 
data were available to demonstrate that adjacent thermal wells 
were not in communication with each other.

A key characteristic of geothermal systems is reservoir 
temperature. In a few cases where deep wells are present, the 
reservoir temperature can be directly measured, but in most cases, 
especially where no wells are present, it must be estimated using 
fluid geothermometry. Fluid geothermometry is an imperfect esti-
mator of reservoir temperatures, but the use of geothermometry is 
considered essential in this study for two reasons: 1) to minimize 
temperature bias between wells and springs, because well tem-
peratures commonly exceed the surface boiling point, but spring 
temperatures rarely do, due to the effects of evaporative cooling 
during boiling, and 2) to make it possible to assess relationships 
between structural environments and reservoir temperatures, with 
the expectation that reservoir temperatures are influenced by the 
depth of penetration of meteoric fluids into the crust. Some oil 
and gas wells have relatively high temperatures by virtue of their 
great depths, but where these temperatures do not exceed the 
regional background crustal temperature gradient, they do not 
indicate by themselves the presence of geothermal activity. For 
this reason, data from oil and gas wells were excluded if depths 
exceeded 500 m.

In the database constructed by Coolbaugh (2003), the tem-
perature assigned to a geothermal system was the maximum 
of the measured temperature and the average of two or more 
geothermometers. Geothermometer-based temperatures for 
geothermal systems >160°C were taken from Mariner et al. 
(1983), by averaging temperature estimates based on the quartz 
(Fournier and Rowe, 1966; Fournier, 1981), Mg-corrected Na-
K-Ca (Fournier and Potter, 1979), and SO4-H2O (McKenzie and 
Truesdell, 1977) geothermometers. Following the methodology of 
Mariner et al. (1983), the chalcedony geothermometer (Fournier, 
1981) was used in place of the quartz geothermometer when the 
Mg-corrected Na-K-Ca geothermometer was less than 100°C. 
For geothermal systems <160°C, the SO4-H2O geothermometer 
was not included in the averaging, because of limited data avail-
ability, but otherwise the geothermometer methodology remained 
the same.

Data sources included, for all states, the Geo-Heat Center State 
Geothermal Database (2002) and Blackwell (2002). For Nevada, 
additional data were taken from Garside (1994) and Mariner et 
al. (1983). For Utah, additional data were taken from Blackett 
and Wakefield (2002), NOAA and Utah Geological and Mineral 
Survey (1980), and Edmiston and Benoit (1984). For California, 
Idaho, and Oregon, additional data were respectively taken from 
DOE (1980), Mitchell et al., 1980, and DOE (1982).

Results

The structural settings of ~245 geothermal systems were re-
viewed with published literature, air photos and imagery, geologic 
maps, and/or field visits (Figure 3).  Higher temperature systems 
(>150oC) were prioritized in our analysis.  Many of the “known” 
systems consisted of individual wells within basins and were 
therefore difficult to evaluate.  As we conducted our analysis, we 
also refined the locations and names of many of the geothermal 
systems in the initial database.  

Although faults are the major controlling feature of fluid flow 
within geothermal systems in this region, the literature on struc-
tural settings of individual systems is relatively scant.  Thus, we 
have made the first interpretations of the structural settings for 
many geothermal fields.  In general, it was possible to make such 
determinations if the systems were situated within or near bedrock 
exposures, but further analysis utilizing geophysical data is needed 
to determine the settings for many systems in the central parts of 
large basins.  Thus, more than 20% of the systems reviewed were 
not initially catalogued. 

Of the geothermal fields analyzed to date, we found that 
step-overs or relay ramps, fault intersections, and normal fault 
terminations or tip-lines hosted most of the geothermal systems 
(Figs. 2 and 3).  Step-overs or relay ramps in normal fault zones 
served as the most favorable structural setting, hosting ~32% 
of the systems.  Such areas are characterized by multiple, com-
monly overlapping fault strands, increased fracture density, and 
thus enhanced permeability.  Examples of geothermal systems 
within normal fault step-overs include Desert Peak, Jersey Val-
ley, and Tungsten Mountain.  Intersections between normal faults 
and either transversely oriented strike-slip or oblique-slip faults 
accounted for ~22% of the systems.  Within such intersections, 
multiple minor faults typically connect major structures and fluids 
can flow readily through highly fractured areas or dilational quad-
rants.  Examples include Roosevelt Hot Springs, Blue Mountain, 
and Crump Geyser.  Normal fault terminations or tip-lines, where 
horse-tailing generates a myriad of closely-spaced faults (Figure 
2B) and thus increased permeability, also represented ~22% of 
the systems.  Systems that occupy such tip-lines include Gerlach, 
Desert Queen, Grover’s Hot Springs, and possibly Tuscarora.  It 
is noteworthy that Quaternary faults typically lie within or near 
most of the geothermal systems in the Great Basin, as previously 
noted by others (Bell and Ramelli, 2007).  

Two major subsets of fault intersections include accommo-
dation zones and displacement transfer zones.  Accommodation 
zones are belts of intermeshing, oppositely dipping normal faults 
(Figure 2C) and therefore include multiple fault intersections.  
These zones host ~8% of the systems, including Salt Wells (also 
known as Eight-Mile Flat), Sou Hot Springs, Moana, and McGin-
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ness Hills.  Displacement transfer zones accommodate a transfer 
of strain between strike-slip and normal faults (e.g., northeastern 
margin of the Walker Lane).  Geothermal systems in displacement 
transfer zones are commonly focused along the normal faults 
proximal to their dilational intersections with nearby strike-slip 
faults.  About 5% of the systems were found in displacement 
transfer zones, including Columbus Marsh, Amedee, and Pyramid 
Rock.  Other observed settings for geothermal systems include 
major range-front faults (3%; e.g., parts of Dixie Valley), salients 
or apices of major normal faults (3%; e.g., Walley’s Hot Springs 
and Nevada Hot Springs), and pull-aparts in strike-slip fault sys-
tems (4%) (e.g., Coso and Lee-Allen). 

It is notable that many of the higher enthalpy systems are 
characterized by more than one type of favorable setting at a single 
locality.  For example, the Salt Wells or Eight-Mile Flat geothermal 
system in west-central Nevada occurs within an accommodation 

zone between east- and west-dipping normal faults, 
at the south end of a major east-dipping normal 
fault zone, and possibly within a small displacement 
transfer zone.  The Brady’s system lies with a discrete 
left step in a NW-dipping normal fault zone within a 
broader accommodation zone.  Steamboat appears to 
occupy a broad accommodation zone between over-
lapping east- and west-dipping normal fault zones 
at the south end of the Truckee Meadows while also 
containing discrete fault intersections that control 
fluid flow within the developed part of the field. 

Discussion and Implications

Although exceptions exist, geothermal systems 
are relatively rare along the displacement-maxima 
zones or mid-segments of major normal faults (i.e., 
major range-front faults), possibly due to both reduced 
permeability in thick zones of clay gouge and peri-
odic release of stress in major earthquakes.  Instead, 
geothermal systems most commonly occur in belts 
of intermeshing, overlapping, or intersecting faults.  
Step-overs (relay ramps), terminations, intersections, 
and accommodation zones in fault systems correspond 
to long-term, critically stressed areas, where fluid 
pathways are more likely to remain open in networks 
of closely-spaced, breccia-dominated fractures.  

These findings may help to guide geothermal 
exploration in the Great Basin and aid in tapping 
into the presumably vast amount of blind geother-
mal systems that underlie the region.  This includes 
planning the location of individual production wells 
within a broader geothermal anomaly.  For example, 
a logical site for a production well within an anomaly 
may be the horse-tailing end of a major normal fault 
or dilational part of a fault intersection.  This work 
should, of course, be coupled with slip and dilation 
tendency analysis of fault zones and where possible 
3D modeling (Moeck et al., 2009, 2010), so as to 
not only select the best well sites but also estimate 
the best well paths.  

Comparative analysis of favorable settings be-
tween different parts of the Great Basin and between different 
types of systems (e.g., magmatic vs. amagmatic) is also important.  
It is obvious, for example, that geothermal systems within pull-
aparts and displacement transfer zones are more abundant within 
or along the margins of the Walker Lane, whereas systems within 
step-overs and accommodation zones in normal fault systems 
are more prevalent within the extensional terranes.  However, 
the initial findings show no apparent patterns in the abundance 
of systems in step-overs vs. fault terminations, for example, in 
different parts of the Great Basin.  Also, structural settings in 
the magmatic-heated systems appear to be as varied as those in 
the non-magmatic.  Ultimately, another key component will be 
estimating what proportions of certain structural settings might 
contain geothermal activity in a given area.  In the near future, 
however, any such estimate will be hampered by the likelihood of 
abundant undiscovered, blind geothermal systems in the region.  
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