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ABSTRACT

To provide a sustainable heat extraction rate, an Enhanced 
Geothermal System (EGS) requires adequate circulation of the 
working fluid through a heat exchanger, which is comprised of 
a network of open fractures. The permeability of the fracture 
network constrains the fluid flux, and the surface area of the 
matrix rocks in contact with the fluid constrains the power or 
efficiency of the heat exchanger. Consequently, these parameters 
(surface area and permeability) are crucial for determining the 
capacity and longevity of EGS systems. One promising approach 
to estimate these properties is to analyze natural and/or artifi-
cial tracer data that are subject to fracture-matrix interactions 
including matrix diffusion and a number of chemical reactions 
within the matrix. Analytical solutions for tracer transport are 
commonly used to analyze tracer test data. However, precip-
itation-dissolution reactions can impact the tracer behavior, 
and analytical solutions for tracer transport associated with 
precipitation-dissolution reactions are limited in the literature. 
This study develops analytical solutions for tracer transport in 
both a single-fracture and a multiple-fracture system associated 
with precipitation-dissolution reactions under transient and 
steady state transport conditions. These solutions also take into 
account advective transport in fractures and molecular diffusion 
in rock matrix. It is demonstrated that for studying distributions 
of disturbed tracer concentration (defined as difference between 
actual concentration and its equilibrium value), effects of pre-
cipitation-dissolution reactions are mathematically equivalent 
to a “decay” process with a decay constant proportional to the 
corresponding bulk reaction rate. This important feature signifi-
cantly simplifies our derivation procedure by taking advantage 
of the existence of analytical solutions to tracer transport associ-
ated with radioactive decay in fractured rock. It is also useful 
for interpreting tracer breakthrough curves, because impact of 

decay process is relatively easy to analyze. Several illustrative 
examples (breakthrough curves obtained from analytical solu-
tions) are presented and show that results are quite sensitive to 
fracture spacing, fracture surface area, and bulk reaction rate (or 
“decay” constant), indicating that the relevant flow and transport 
parameters can be inferred by analyzing tracer signals.

1. Introduction

Tracer transport in fractured rock involves fast and advec-
tion-dominated processes in fractures characterized by high 
permeability and mass transfer between fractures and rock matrix 
in which chemical reactions may occur as well. Modeling tracer 
transport in fractured rock is of interest to a number of practical 
applications, including interpretation of isotopic tracer transport 
signals for characterizing flow patterns and fracture-matrix interac-
tions in geothermal systems (e.g., DePaolo, 2006).

Practical applications of a variety of analytical solutions for 
tracer transport in fractured rock to field-scale problems have 
been widely documented in the literature (e.g., Neretnieks, 2002; 
DePaolo, 2006; Maloszewski and Zuber, 1985). Water flow in a 
saturated fractured rock is commonly characterized by one or 
several dominant flow paths. In these applications, tracer transport 
through one of the flow paths is approximated by the correspond-
ing analytical solutions. A practical application is related to 
enhanced geothermal system (EGS) in which heat is mined using 
injection and production wells (MIT, 2007). An EGS corresponds 
to a geothermal reservoir (at a depth with high temperature) that 
is fractured artificially (Figure 1). A key parameter for an EGS 
is fracture-matrix interfacial area between injection and produc-
tion wells, because the area is directly related to heat transfer 
from surrounding rock to working fluid (water) and therefore 
determines capacity and longevity of a geothermal power plant. 
Use of analytical solutions to analyze signals of natural and/or 
artificial tracers provide a promising and practical way to deter-
mine the area, because tracer transport is considerably impacted 
by the area through matrix diffusion and precipitation-dissolution 
reactions occurring in the rock matrix. The focus of this study is 
the development of relevant analytical solutions.
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Previous analytical so-
lutions for tracer transport 
in fractured rock consider 
chemical reactions such 
as radioactive decay and 
adsorption (represented 
by a retardation factor). 
To the best of our knowl-
edge, the recent work of 
DePaolo (2006) prob-
ably represents the first 
effort to develop system-
atic analytical solutions 
to tracer transport in frac-
tured rock associated with 
precipitation-dissolution 
reactions. That work was 
particularly focused on 
describing isotopic tracer 
transport. Developed rela-
tionships between isotopic signals and flow path properties were 
demonstrated to be useful for characterizing the corresponding 
fracture-matrix properties (DePaolo, 2006). However, the ana-
lytical solutions of DePaolo (2006) are limited to steady-state 
transport conditions. Transient solutions are required for describ-
ing isotopic tracer transport in more general cases. In this paper, 
we derive analytical solutions to tracer transport in fractured rock 
associated with precipitation-dissolution reactions under both 
steady-state and transient transport conditions. The derivation is 
based on the analytical inversions of Laplace transformation that 
are similar to those used by Tang et al. (1981) and Sudicky and 
Frind (1982). The usefulness of our solutions in describing tracer 
transport is also demonstrated under a number of conditions. 

2. Assumptions and Governing Equations

We will investigate tracer transport in a single fracture or a 
set of equally spaced identical fractures. Note that focus herein is 
on solutions to tracer transport in fractures, rather than in matrix, 
although impact of rock matrix is exactly considered. This is 
simply because tracer concentration data are often obtained from 
fractures in practical applications (Neretnieks, 2002; DePaolo, 
2006). Figure 2 shows a multiple-fracture system, with a single-
fracture system being considered a special case with infinite 
fracture spacing. Water flow rate in each fracture is assumed to 
be constant and downward. Each fracture has a constant aperture 
that is much smaller than the fracture spacing. Matrix block has 
homogeneous properties and negligible permeability. Therefore, 
advection in rock matrix can be ignored. Because of transverse 
diffusion and dispersion, complete mixing across its width at all 
times. In other words, the solute concentration in the fracture is 
uniform across the fracture aperture. We also assume that mo-
lecular diffusion process within matrix occurs along the direction 
perpendicular to fractures only. The same assumptions were made 
in previous studies (e.g., Sudicky and Frind, 1982; DePaolo, 2006). 
Furthermore, we ignore the longitudinal dispersion and molecular 
diffusion within a fracture, because solute transport is advection 
dominated in a fracture and these processes (dispersion and dif-

fusion along the flow direction) are not important for practical 
applications (e.g., Neretnieks, 2002). Ignoring these processes 
can significantly simplify mathematical development of analytical 
solutions. Following DePaolo (2006), we also consider dissolution 
reaction rate to be the same as precipitation reaction rate within 
rock matrix. The justification for this treatment was provided in 
DePaolo (2006) within the context of isotopic tracer transport. 

With  the  above 
assumptions, tracer 
transport process in 
fractured rock can 
be described by two 
coupled equations for 
transport in liquid phase 
(one for fracture and 
one for rock matrix) 
and the third equation 
for solid phase due to 
precipitation-dissolu-
tion reactions. While 
the detailed deriva-
tion of these equations 
was given in DePaolo 
(2006), these equations 
are briefly discussed 
herein.

Based on the mass 
conservation principle, tracer transport in fractures is described 
by (Sudicky and Frind, 1982; DePaolo, 2006):

∂cf
∂t

= −v
∂cf
∂z

+ Dmϕm

b
∂cp
∂x x=b

 (1)

where t is the time (T), z and x are the spatial coordinates (M) 
(Figure 2), cf is the tracer concentration in fractures (M/L3), v is 
the groundwater velocity in fractures (L/T), Dm is matrix diffusion 
coefficient defined by molecular diffusion coefficient in free water 
multiplied by tortuosity (L2/T), ϕm  is matrix porosity, cp is the 
tracer concentration in matrix pore liquid (M/L3), and 2b is the 
fracture aperture (L). The second term on the right hand of the 
equation describes the flux crossing two fracture walls. 

Within the rock matrix, the pore fluid interacts with the solid 
phase by dissolution-precipitation, and the pore fluid communi-
cates with the fracture fluid by diffusion. The equations describing 
these processes are given as (DePaolo, 2006):

∂cp
∂t

= Dm

∂2cp
∂x2

+ RmM cs − Kdcp( )  (2)

∂cs
∂t

= −Rm cs − Kdcp( )  (3)

where cs is the tracer concentration in solid phase (M/L3), Rm is 
the bulk (dissolution and precipitation) reaction rate (1/T) that 
was also called bulk reaction time constant by DePaolo (2006), 
Kd is the distribution coefficient for solid/fluid system, and M is 
the mass ratio of solid to liquid given by

M =
ρs 1−ϕm( )

ρ fϕm

 (4)

Figure 1. A sketch of enhanced geother-
mal system (EGS). 

 

Figure 2. Fracture-matrix system.
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In Equation (4), ρf  and ρs are fluid and solid density (M/L3). In 
Equation (2), terms RmMcs and RmMKdcp correspond to dissolution 
and precipitation, respectively. When these two terms are equal, 
dissolution and precipitation are in equilibrium. 

For isotopic tracer transport processes with typical Rm values, 
DePaolo (2006) demonstrated that solid phase concentration cs 
hardly changes because of low tracer concentration in the liquid 
phase in natural fracture rocks. Therefore, he assumed cs to be 
constant during developing steady-state solutions for tracer trans-
port. In this study, we follow the similar treatment and therefore 
need to solve Equations (1) and (2) only (as a result of assuming 
cs to be a constant) for modeling tracer transport in liquid phase. 

For convenience, we introduce the following variables:
Cp = cp −

cs
Kd

 (5-1)

Cf = cf −
cs
Kd

 (5-2)

λ = RmMKd  (5-3)
Note that under equilibrium conditions, Cf = Cp = 0; Cf and Cp 

can be considered as concentration disturbances to equilibrium 
concentration fields, because they represent differences between 
tracer concentrations and their equilibrium values. Combining 
Equations (1), (2) and (5) yields

∂Cf

∂t
= −v

∂Cf

∂z
+ Dmϕm

b
∂Cp

∂x x=b

 (6)

∂Cp

∂t
= Dm

∂2Cp

∂x2
− λCp  (7)

It is of interest to note that the transformed equations (6) and 
(7) are mathematically equivalent to equations describing tracer 
transport subject to a decay process (with the decay constant λ ) 
occurring in the matrix block only. As will be demonstrated later, 
this feature is important for obtaining our analytical solutions 
based on the existing solutions describing tracer transport subject 
to radioactive decay in fractured rock, such as those derived by 
Tang et al. (1981) and Sudicky and Frind (1982). 

Assuming the existence of equilibrium at t = 0 and consider-
ing a continuous injection case, we can have initial and boundary 
conditions for (6):

Cf (z,0) = 0  (8-1)
Cf (0,t) = C0  (8-2)
Cf (∞,t) = 0  (8-3)

The initial and boundary condition for the matrix equation 
(7) are

Cp (x,z,0) = 0  (9-1)

Cp (b,z,t) = Cf (z,t)  (9-2)

∂Cp

∂x
(B,z,t) = 0  (9-3)

where B is the half fracture spacing (Figure 2). The coupling of 
the matrix to the fracture is expressed by (9-2). Note that (9-3) is 
applied to multiple-fracture systems. For a single-fracture system, 
it may be replaced by (Tang et al., 1981)

Cp (∞,z,t) = 0   (9-4)

3. Analytical Solutions for a Single-Fracture System

We will start with deriving analytical solutions for a single-
fracture system. Although a single-fracture system rarely exists 
in reality, it is a good approximation for many realistic fractured 
rocks when tracer penetration depth is much smaller than fracture 
spacing, because in this case, effects of surrounding fractures can 
be ignored. Analytical solutions are obtained with the strategy used 
by Tang et al. (1981) and Sudicky and Frind (1982) for develop-
ing analytical solutions to radioactive tracer transport in fractured 
rock. Specifically, we apply Laplace transformation to (7) and 
solve the transformed equation in Laplace space first, and then 
apply Laplace transformation to (6). The transformed equations 
are coupled through the term describing mass transfer between 
fractures and rock matrix and Equation (9-2). Finally, solutions 
in the Laplace space are inverted. 

Applying Laplace transformation to (7) yields

pCp ' = Dm

d 2Cp '
dx2

− λCp '  (10)

where 'pC  is the Laplace transformation of pC and given by

Cp ' = exp(− pt)Cp (x,z,t)dt
0

∞

∫ ' (11)

Considering boundary conditions (9-2) and (9-4), the solution 
to ordinary differential equation (10) is obtained as 

Cp ' = C f 'exp EP1/2 (x b){ }  (12)

where 
E = Dm

1/2  (13)

P = p +  (14)

and C f '  is the Laplace transformation of Cf . Based on (12), we 
have

dCp '
dx x=b

= EP1/2C f '  (15)

Applying the Laplace transform to (6) yields

pC f '+ v
dC f '
dz

= mDm

b
dCp '
dx x=b

 (16)

Substituting (15) into (16), we obtain the following solution 
to (16)

C f ' = C0

p
exp( pz

v
)exp P1/2z

vF
 (17)

where

F = b

mDm
1/2  (18)

The original tracer concentration fC  can be given in terms 
of the inverse transform  L-1 as

Cf = L
−1(Cf ') = exp

λz
v

⎛
⎝⎜

⎞
⎠⎟ L

−1 exp − λz
v

⎛
⎝⎜

⎞
⎠⎟Cf '

⎡
⎣⎢

⎤
⎦⎥

 (19)
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Taking advantage of the fact that the inverse transform of 

exp z
v

C f , C z t( , )r was already reported by Tang et al. 

(1981) in their Equations (41) and (42). Thus, Cf  can be directly 

obtained by multiplying C z t( , )r  by exp z
v

and the final 

result is
Cf

C0

= 0     T < 0  (20-1)

Cf

C0

= 1
2
[exp − λ1/2z

vF
⎛
⎝⎜

⎞
⎠⎟
erfc z

2vFT
− λ1/2T⎛

⎝⎜
⎞
⎠⎟

+exp λ1/2z
vF

⎛
⎝⎜

⎞
⎠⎟
erfc z

2vFT
+ λ1/2T⎛

⎝⎜
⎞
⎠⎟ ]

T > 0   (20-2)

where

T = t − z
v

⎛
⎝⎜

⎞
⎠⎟
1/2

 (20-3)

In some practical applications, it is often useful to relate tracer 
concentration signals to fracture surface areas, because the surface 
areas are important parameters for mass and heat transfer between 
mobile fluid in fractures and rock matrix. Under steady state flow 
conditions, we have the following conservation equation for fluid 
volume in fractures

Qτ f = Ab  (21)

where Q is fluid flux in a fracture (L3/T), and A is the fracture 
surface area (L2). In terms of fracture surface area, (20) can be 
rewritten as 

Cf

C0

= 0      T < 0  (22-1)

Cf

C0

= 1
2
[exp − ADmϕm

LQ
⎛
⎝⎜

⎞
⎠⎟
erfc ADm

1/2ϕm

2QT
− Dm

1/2

L
T

⎛
⎝⎜

⎞
⎠⎟

+exp ADmϕm

LQ
⎛
⎝⎜

⎞
⎠⎟
erfc ADm

1/2ϕm

2QT
+ Dm

1/2

L
T

⎛
⎝⎜

⎞
⎠⎟
]

   T > 0   (22-2)

where the diffusive reaction length defined by DePaolo (2006) as

L = Dm

λ
⎛
⎝⎜

⎞
⎠⎟
1/2

 (22-3)

This reaction length (L) has the property that diffusion through 
the pore fluid is faster than reaction at length scales smaller than 
L, and reaction is faster than diffusion at length scales greater 
than L (DePaolo, 2006).  

Using the properties of erfc ∞( ) = 0 and erfc −∞( ) = 2 , we can 
easily obtain the steady-state solution by taking the limit T → ∞:

Cf

C0

= exp − λ1/2z
vF

⎛
⎝⎜

⎞
⎠⎟
= exp − ADmϕm

LQ
⎛
⎝⎜

⎞
⎠⎟

 (23)

4. Analytical Solutions for a  
Multiple-Fracture System

In the previous section, we derived analytical solutions for a 
single-fracture system which is a good approximation of many 
realistic fractured rocks when the tracer transport within fracture 

does not significantly interact with tracer transport in surrounding 
fractures. However, for relatively small fracture spacing and/or 
long tracer travel times, interactions between adjacent fractures 
become important. In this case, solutions for multiple-fracture 
systems are needed for modeling tracer transport in fractured rock. 
Similar procedure for solving tracer transport problem in a single 
fracture system is followed here for a multiple-fracture system. 
Also note that governing equations are the same for both fracture 
systems except for some boundary conditions.

We first solve transformed tracer transport equation for rock 
matrix. The general solution to the transformed equation (10) is 
of the form (Sudicky and Frind, 1982)

Cp ' = C1 cosh −EP1/2 (B − x){ }+C2 sinh −EP1/2 (B − x){ }  (24)

Based on boundary condition (9-3), we have C2 = 0. Using 
boundary condition (9-2), we obtain C1 and (24) becomes

Cp ' = Cf '
cosh EP1/2 (B − x){ }
cosh σP1/2{ }   (25)

where again Cf '  is the Laplace transformation of  Cf   and
σ = E(B − b)  (26)

The coupling between transformed tracer transport equations 
for fractures and matrix is done through the concentration gradient 
term in (16). In this case, that term is 

dCp '
dx x=b

= −EP1/2Cf ' tanh σP1/2( )  (27)

Then the transformed equation for tracer transport in fracture 
(Equation 16) becomes

pCf '+ v
dCf '
dz

= −ϕmDm

b
EP1/2 tanh σP1/2( )Cf '   (28)

The solution to the above equation subject to boundary condi-
tion defined by (8-2) is 

Cf ' =
C0

p
exp(− pz

v
)exp −ωP1/2 tanh σP1/2( )( )  (29)

where

ω = ϕmDm
1/2z

bv
 (30)

The original tracer concentration Cf  can be determined by the 

inverse transform of Cf’. The inverse transform of Cf 'exp − λz
v

⎛
⎝⎜

⎞
⎠⎟

  

was already derived by Sudicky and Frind (1982). Thus, Cf can be 

easily determined as the inverse transform of Sudicky and Frind 

(1982) multiplied by exp λz
v

⎛
⎝⎜

⎞
⎠⎟ :

Cf

C0

= 0      T 0 < 0  (31-1)
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Cf

C0

= 1
π
exp 2λz

v
⎛
⎝⎜

⎞
⎠⎟ I dε
0

∞

∫      T 0 > 0  (31-2)

where

I = ε
λ 2 + ε 4 / 4

exp εR
0( )

exp −λT 0( ) ε 2

2
sin ε I

0( )− λ cos ε I
0( )⎧

⎨
⎩

⎫
⎬
⎭
+ ε 2

2
sin Ω0( )+ λ cos Ω0( )⎡

⎣
⎢

⎤

⎦
⎥     (31-3)

εR
0 = −ωε

2
sinh(σε )− sin(σε )
cosh(σε )+ cos(σε )

⎛
⎝⎜

⎞
⎠⎟

 (31-4)

ε I
0 = ε 2T 0

2
− ωε
2

sinh(σε )+ sin(σε )
cosh(σε )+ cos(σε )

⎛
⎝⎜

⎞
⎠⎟

  (31-5)

Ω0 = −ωε
2

sinh(σε )+ sin(σε )
cosh(σε )+ cos(σε )

⎛
⎝⎜

⎞
⎠⎟

 (31-6)

T 0 = t − z
v

  (31-7)

Similar to the analytical solutions to the single-fracture system 
as discussed in the previous section, Equation (31) can also be 
written in terms of diffusive reaction length defined in (22-3), 
fracture surface area A and liquid flux Q. In this case, we have 

Cf

C0

= 0      T 0 < 0  (32-1)

Cf

C0

= 1
π
exp 2ADm

2b
L2Q

⎛
⎝⎜

⎞
⎠⎟

I dε
0

∞

∫      T 0 > 0   (32-2)

ω = ϕmD
1/2A
Q

 (32-3)

T 0 = t − Ab
Q  (32-4) 

5. Illustrative Examples
Analytical solutions for a single-fracture system and a 

multiple-fracture system are presented in Sections 3 and 4. As 
previously indicated, our focus is on solutions to tracer transport 
in fractures, because tracer concentration data are often obtained 
from fractures in practical applications (Neretnieks, 2002; De-
Paolo, 2006). Analyses of these tracer data are generally used to 
understand flow and transport processes in fractured rock and to 
infer values of important parameters characterizing the relevant 
processes including fracture-matrix interaction. 

As previously indicated, the current study is mainly motivated 
by a practical need to characterize a geothermal system in a natural 
or artificially created fractured reservoir using natural isotopic 
tracers with different transport properties. A key parameter for 
determining the economic feasibility of a geothermal system is the 
fracture-matrix interfacial areas. In this section, we use the newly 
developed analytical solutions to demonstrate how sensitive tracer 
transport processes are to fracture-rock properties. The sensitivity 
is crucial for successful determination of reservoir properties by 

analyzing data for natural tracers. Note that parameter values used 
in this section are typical for a geothermal system in fractured 
rocks; it may not be the case for other flow and transport systems. 

The parameter values used in our illustrative examples are 
within the ranges given in DePaolo (2006) for studying isoto-
pic tracer transport in a number of typical geothermal systems 

(Table 1). In this study, we use these parameter values for the 
purpose of demonstrating the usefulness of the analytical solutions, 
rather than investigating tracer transport in a practical problem. 

Figure 3 shows tracer breakthrough curves for a multiple-
fracture system with half fracture spacing B = 2.0 and 0.5 m, 
respectively. The relative concentration in this figure and other 

figures is defined as
C
C

f

0

. For the comparison purpose, a break-

through curve for a single fracture system is also presented. All 
these breakthrough curves are obtained using the parameter values 
given above. For B = 2.0 m, results from the single fracture system 
(with infinite fracture spacing) and the multiple-fracture system 
are essentially identical, indicating that for a relatively large 
fracture spacing, impact of surrounding fractures can be ignored, 
as expected. This also demonstrates the consistence of analytical 
solutions obtained for the two systems. For travel time less than 
one year, all the breakthrough curves remain essentially the same, 
because tracer penetration depth during this time period is much 
smaller than the given fracture spacing values, and therefore tracer 

Table 1. Parameter values used in illustrative examples.

bulk reactivity Rm 1.E-5 yr-1

matrix diffusion coefficient Dm 0.1 m2 /yr

matrix porosity Cf

C0

0.01

mass ratio of solid to liquid phase M 250 

distribution coefficient Kd 35

 advective time in fracture z
v

0.1 yr.  

fracture aperture 2b 1.E-3 m

Figure 3. Breakthrough curves for a single fracture system and a multiple 
fracture system with half fracture spacing B = 2.0 and 0.5 m. 
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transport process is close to that for the single-fracture case. For a 
travel time longer than one year, tracer concentration for B = 0.5 
m becomes larger than that for B = 2.0, resulting from that inter-
action between tracer transport from adjacent fractures reduces 
diffusive transport from fractures into matrix. 

Figure 4 presents tracer breakthrough curves for a single-
fracture system with two different L values (Equation 22-3). The 
base case corresponds to parameter values given at the begin-
ning of this section and the other curve to the case with a L value 
reduced by half (or increased λ  value that is 4 times as large as 
the base-case value). The two curves are very similar at an early 
time, but become considerably different later. The base case has 
a smaller λ  value, and therefore a higher concentration at a later 
travel time. This example demonstrates the usefulness of viewing 
effects of precipitation-dissolution reactions as a “decay” process 
with decay constant λ  that is proportional to the bulk reactivity 
in the matrix (Equation 5-3). The differences between the two 

curves in Figure 4 result from the fact that tracer mass loss owing 
to “decay” is time dependent and becomes significant only for a 
relatively long travel time. 

Figure 5 shows breakthrough curves for a single fracture 
system with different values for matrix diffusion coefficient Dm. 
The base case and the “increased Dm” case (dashed line) have the 
same parameter values (Table 1) except that the latter has a Dm 
value that is four times as large as the base case. As expected, a 
large diffusion coefficient gives relatively low concentration at a 
given time. This is because a larger matrix diffusion coefficient 
increases diffusive tracer transfer between a fracture and its sur-
rounding matrix. An increased fracture-matrix surface area would 
play a similar role. Figure 5 also includes a third breakthrough 
curve that has the same (increased) Dm value as the dashed curve, 
but an increased λ  value such that its L value is the same as the 
base case. Difference between the two “increased Dm” cases is 

similar to the difference between the two curves shown in Figure 4 
as a result of effects of “decay” processes with different λ  values. 

In summary, the illustrative examples show that results are 
sensitive to rock and tracer properties for parameter values typi-
cal for a geothermal system (DePaolo, 2006), indicating that the 
relevant flow and transport parameters for a geothermal reservoir 
may be estimated by analyzing tracer signals. We also like to 
emphasize that our analytical solutions are developed based on 
several assumptions and approximations. One of them is that 
change in tracer concentration of the solid phase is not significant. 
The adequacy of this approximation for isotopic tracer transport 

Figure 4. Breakthrough curves for a single fracture system with different 
L values. For the “Decaresed L” case, L is reduced by half from the value 
used in the base case. 

Figure 5. Breakthrough curves for a single fracture system with different 
Dm values. In the “Increased Dm” case, the Dm value is four times as large 
as that in the base case.

Figure 6. Comparisons between simulation results obtained from the cur-
rent analytical solutions and semi-analytical solutions in Mukhopadhyay 
et al. (2010). Parameter values in Table 1 and B = 0.5 m are used for all 
the simulations except Rm.
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was demonstrated in DePaolo (2006). Most recently, Mukhopad-
hyay et al. (2010) developed a semi-analytical solution that is not 
constrained by the constant cs assumption. In that case, they were 
not able to obtain closed-form solutions, and instead numerically 
performed the inverse of Laplace transformations. As indicated 
in Figure 6, results from their solutions are identical to those ob-
tained from our analytical solutions for small reaction rates that 
are typical for natural isotopic tracers, which is consistent with 
the finding of DePaolo (2006). 

6. Conclusions

While significant progress has been made in developing 
analytical solutions for tracer transport in fractured rock under 
a variety of conditions, analytical solutions for tracer transport 
associated with precipitation-dissolution reactions are limited in 
the literature. These reactions are important for a number of ap-
plications such as characterizing an EGS system by interpreting 
tracer signals.  

This study develops analytical solutions for tracer transport in 
both a single-fracture and a multiple-fracture system associated 
with precipitation-dissolution reactions under transient and steady 
state transport conditions. These solutions also take into account 
advective transport in fractures and molecular diffusion in rock 
matrix. It is demonstrated that for studying distributions of dis-
turbed tracer concentration (defined as difference between actual 
concentration and its equilibrium value), effects of precipitation-
dissolution reactions are mathematically equivalent to a “decay” 
process with a decay constant proportional to the corresponding 
bulk reaction rate. This important feature significantly simplifies 
our derivation procedure by taking advantage of the existence of 
analytical solutions to tracer transport associated with radioactive 
decay in fractured rock. It is also useful for interpreting tracer 
breakthrough curves, because the impact of decay processes is 
relatively easy to analyze. Several illustrative examples (break-
through curves obtained from analytical solutions) are presented 

and show that results are considerably sensitive to fracture spac-
ing, matrix diffusion coefficient (fracture surface area), and bulk 
reaction rate (or “decay” constant), indicating that the relevant 
flow and transport parameters may be estimated by analyzing 
tracer signals.
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