
NOTICE CONCERNING COPYRIGHT 
RESTRICTIONS 

 
This document may contain copyrighted materials. These materials have 
been made available for use in research, teaching, and private study, but 
may not be used for any commercial purpose. Users may not otherwise 
copy, reproduce, retransmit, distribute, publish, commercially exploit or 
otherwise transfer any material. 

 
The copyright law of the United States (Title 17, United States Code) 
governs the making of photocopies or other reproductions of copyrighted 
material. 

 
Under certain conditions specified in the law, libraries and archives are 
authorized to furnish a photocopy or other reproduction. One of these 
specific conditions is that the photocopy or reproduction is not to be "used 
for any purpose other than private study, scholarship, or research." If a 
user makes a request for, or later uses, a photocopy or reproduction for 
purposes in excess of "fair use," that user may be liable for copyright 
infringement.

 
This institution reserves the right to refuse to accept a copying order if, in 
its judgment, fulfillment of the order would involve violation of copyright 
law.

 



GRC Transactions, Vol. 34, 2010

1179

Keywords
Mass transport, tracer test, fracture network, fractional deriva-
tive, non-Fickian diffusion, fractal geometry

ABSTRACT

A fractional advection-dispersion equation (fADE) was em-
ployed to describe non-Fickian mass transport in fractured rock 
masses. A fracture network model based on fractal geometry was 
utilized to analyze numerical tracer responses in inhomogeneous 
rock masses composed of a number of natural fractures. The den-
sity of the natural fractures was varied in the numerical analyses. It 
was shown that non-Fickian transport (anomalous dispersion with 
heavy tails) was observed for lower natural fracture densities and 
the tracer response could be described by the fADE. It was sug-
gested that the term of fractional time derivative in the fADE was 
responsible for the variance of travel time in the tracer responses, 
resulting in the non-Fickian transport. The results obtained in this 
study may support the use of the fADE for characterizing complex 
fluid flow in geothermal reservoirs.

Introduction

Reinjection started originally as a disposal method in the 
development of conventional geothermal resources. However, it 
has more recently been recognized as an essential and important 
part of reservoir management and has been included in enhanced 
geothermal systems (EGS). Computer models (e.g., TOUGH2 
(Pruess, 1991)) are often employed for reservoir analyses, which 
require the details of structural description, stratigraphy, reser-
voir parameters, etc. However, it is usually time-consuming and 
costly to obtain sufficient field data for such analyses in most 
geothermal sites.

In this study, we are interested in tracer tests which help 
monitor fluid movement within the reservoir. Tracers play an 
important role in the exploration and characterization of geo-
thermal resources, and can also be a valuable tool in the design 
and management of production and injection operations. Tracer 

tests are expected to provide useful and convenient information 
for characterizing globally the underground structure through the 
mass transport between injection and production wells, whilst 
the other many methods can collect data only in the vicinity of 
exploration wells.

The advection–dispersion equation (ADE) commonly used to 
describe mass transport in aquifers is given as follows:

∂c
∂τ

= D ∂2c
∂x2

− v ∂c
∂x

 (1)

where c is the solute concentration, v the average linear ve-
locity, x the distance, τ the time, and D the diffusion coefficient, 
respectively. However, the ADE generally underestimates concen-
trations in the leading and/or trailing edges of tracer responses both 
in the laboratory and in the field (Hatano et al., 1998; Berkowitz 
et al., 2000; A. Cortis and B. Berkowitz, 2004). Dispersion of 
tracers in natural systems is typically observed to be anomalous 
diffusion that is not always appropriately described by Fick’s law. 
The transport is called “non-Fickian”. Numerous authors have 
shown the equivalence between the non-Fickian motions and 
transport equations that use fractional-order derivatives (Benson et 
al., 2000; Zhang et al., 2009; Fomin et al, 2010). We focus on the 
fractional advection-dispersion equation (fADE), which predicts 
the mass transport in fractured reservoirs. A schematic sketch of 
fractured porous aquifer envisioned in this study is presented in 
Figure 1, together with the fADE. The equation, which is already 
dimensionless and normalized, is written as follows (Chiba et 
al., 2008):
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where C is the concentration in the liquid, X the transverse spatial 
coordinate, T the time, b the capacity coefficient for the fractional 
derivative, Pe the Peclet number, α, β, γ fractional time and 
space derivatives (1.0 < α  2.0, 0.0 < β < 0.5, 0.0 < γ  1.0), 
respectively. The second term on the left-hand side of Equation 
(2) models the retardation process associated with secondary 
branched fractures and matrix permeability. The third term on the 
left-hand side is the process of vertical dispersion into surrounding 
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rock masses. The first term on the right-hand side expresses the 
dissipation in the direction water flow.

The fractional derivative terms with respect to time and space 
describe the nonlocal dependence on time and space. Here, the 
concentration change at some location and time might depend on a 
wide variety of locations in space (i.e., the space nonlocality), and 
also might depend on the temporal history of concentration “load-
ing” at that location (the time nonlocality). The time nonlocality can 
explain mass decline because it describes the dynamic partitioning 
of solute mass into the immobile phase, while the space nonlocality 
cannot distinguish the status of solutes (Zhang et al, 2009). The 
nonlocalities can express the development of anomalous dispersion. 
As yet, little work has been done on the relashinship between the 
nonlocalities and the stuructures of fractured rock masses.

We utilize a mathematical model (fADE) to develop a “com-
prehensive and panoramic” model for describing mass transport in 
fractured rock masses in this study. The constitutive variables in the 
fADE are determined for mass transport obtained using a fracture 
network model based on fractal geometry. The effects of fracture 
densities on the constitutive variables are then discussed.

Numerical Analysis
Analysis Method of fADE

The finite-difference method (FDM) is a well-known numeri-
cal method that has been applied to the ADE (Meerschaert and 
Tadjeran, 2004). We performed the numerical solution of Equa-
tion (2) by implicit FDM. In this work, the fractional derivative 
in the governing differential equation is formulated with Caputo’s 
fractional derivative (Caputo, 1967; Zhang et al., 2007).

Fracture Reservoir Model
A 3D stochastic fracture network model based on fractal 

geometry is employed to analyze numerical mass transport in 
inhomogeneous fractured rock masses and further developed to 
perform tracer analyses in this study. The schematic of fracture 
network model and tracer response analyses is illustrated in Fig-
ure 2 (Jing et al., 2000).

In order to perform analyses of tracer tests, a distribution of 
fractures with a circular shape is constructed in a 3D calculation 
region, first. The fracture radius, rη, is generated based on the 
fractal geometry using the following equation:

rη = (1−η)rmin
−D +ηrmax

−D⎡⎣ ⎤⎦
−1/D  (3) 

where η is a random number in the range 0.0 to 1.0, D the fractal 
dimension that has been proven to be capable of mathematically 
representing the geometry of natural fractures (Watanabe and 
Takahashi, 1995), rmin and rmax the specified radius of the small-
est and largest fractures in the model, respectively. Fractures are 
generated until the fracture density reaches the determined level. 
The number of fractures, N, is then given by:

N = C rmin
−D − rmax

−D⎡⎣ ⎤⎦  (4)

where C is the fracture density parameter. The locations and 
orientations of individual fractures are assumed to be random. 
Furthermore, it is assumed that the aperture of circular fracture, 
ai, is proportional to its radius.

In the 3D model, the flow analyses are conducted on a square 
grid and the network model is solved by converting the network 
to an equivalent continuum mesh, as illustrated in Figure 2. To 
model fluid flow within a natural reservoir, we set up calcula-
tions in the x, y, and z directions in a 100m×100m×70m domain 
on a 100×100×70 grid. The Distribution of permeability for each 
block surface, Ki, is governed by the sum of product from each 
penetrating fractures, as follow:

Ki =
ajLj

12µ
, i = x, y, z

j=1

N

∑  (5)

where ai is the fracture aperture, Li the fracture intersection length, 
and η is viscosity of water. Fluid flow is assumed to be laminar and 
controlled by Darcy’s law and the continuity equation:
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Flow calculations are carried out based on Equation (6) under 
the boundary conditions as depicted in Figure 3. A natural fluid 
flow is assumed to take place from the injection point toward the 
production point, and the pressure along the edge for the inlet 
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Figure 1. Schematic of the fADE in a fractured porous aquifer.
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side is taken as 1MPa and that for the outlet side 0MPa. No-flow 
conditions are assumed at the other edges. The pressure at the inlet 
well is set to be 1MPa and that for the outlet well 0MPa.

The tracer analyses are based on the premise that tracer sub-
stances are particle ensembles and each tracer particle travels from 
the injection well to the extraction well located in the above flow. 
Now, a particle continues to move in the direction decided by 
probability approach with respect to volume flow rate. Frequency 
distribution of tracer particles is expressed as the rate of extraction 
particles sorted by the travel time to total particles. The relative 
concentrations of tracers are then calculated as the ratio of particle 
flux during one time interval to total particle flux:

C(x, t) =
Np /QpΔt p
Nall /Qintin

 (7)

where Np is the number of extracted particles during one time in-
terval, Qp the extraction flow rate, Qin the injection flow rate，∆ tp 
the time interval, and tin the injection time, respectively. In this 
analysis, the fracture densities are varied in order to fractured 
reservoirs different complexities. The parameters used for the 
simulations are listed in Table 1.

Estimation of fADE Constitutive Parameters
The fADE is then used to characterize the tracer responses 

obtained by conducing the flow analyzes in the fractured reservoir. 
The characterization requires the determination of the constitu-
tive parameters in the fADE such as α, β, γ, b and Pe. In order 
to determine the fADE constitutive parameters, an optimization 

proceedure was executed using Automatic Design Synthesis 
(ADS) (Vanderplaats and Sugimoto, 1986). Note that the third 
term of the left hand side in Equation (2) describes the dissipation 
from the aquifer to the surrounding rocks. In this study, however, 
no optimal solution was obtained with the third term, which may 
suggest the dispersion into the calculation region outside the injec-
tion interval was negligible. Thus, only α, γ, b and Pe in the fADE 
were optimized. It has been shown that no optimal solution was 
obtained with the ADS for four unknown parameters. Hence, an 
initial value for α was selected first and the other three constitutive 
parameters were optimized by the ADS for the assumed value of 
α. The solution for α was found by changing systematically the 
value of α and repeating the above-mentioned optimization with 
the ADS (see Figure 4).

The optimization with the ADS is based on the Davidon-
Fletcher-Powell (DFP) variable metric method for unconstrained 
minimization and finds the minimum of an unconstrained function 
using the Golden Section method. Initial values ai (i=1, 2, 3) for 
the fADE constitutive parameters to be optimized are assumed 
and given first. The given parameters are assigned to the control 
parameters X i (i=1, 2, 3) to carry out the optimization. The fADE 
is solved and its solution is then compared with the numerical 
result obtained by the fractured reservoir analysis. An objective 
function, F, is defined as follows: 
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Figure 3. Calculation conditions of the fractured reservoir model.

Table 1. Parameters used for the simulation.

Parameters Value
Fractal dimension
Fracture radius r [m]
Fracture aperture [m]
Well spacing [m]
Well length [m]
Injection pressure [MPa]
Production pressure [MPa]
Matrix permeability [m2]
Viscosity of water [Pa·s]
Number of tracer particles

1
0.5～25

1.0×10-4×r
50
50
1
0

1.0×10-14

10-2

1.0×104
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F = Ci
exp −Ci

calc( )2
i=1

N

∑  (8)

where Ci
exp is the numerical data of concentrations obtained from 

the tracer analyses using the fractured reservoir model, Ci
calc  

the numerical solution of the fADE，and N the number of data 
points for concentration, respectively. The ADS is then employed 
in order to implement the optimization by using finite difference 
gradients Fi. If Fi =0 or the number of iterations exceed 25, the 
variations of the updated control parameters Xi with respect to the 
initial control parameters ai are then evaluated and the calculation 

step is repeated for the updated ai until the relative variation of the 
parameters meet the requirement, as indicated in Figure 4. The 
above-mentioned process is iterated in order to find the optimal 
value for α which gives the minimum objective function.

Results and Discussion
The distribution of travel times computed from the tracer 

analyses was examined first. The frequency distributions are 
expressed in terms of the probability density. When the fracture 
density exceeds 20,000, the peak in the distributions appears at 
the travel time of around 103s. In the case of the fracture density 

range, it was observed that the tracer particles always 
traveled through the fracture network. In contrast, 
when the fracture density is lower than 20,000, the 
other peak appears after 106s. The second peak is 
attributable to the matrix permeability assigned 
for the whole calculation area. When the fracture 
density becomes much lower (C < 1,000), only the 
second peak due to the matrix permeability remains, 
eliminating the first peak. In view of the travel time 
distributions, the results for the fracture densities (C 
= 5,000 ~ 50,000) in which the first peak appears will 
be discussed below.

The advection-dispersion equation (ADE) with 
α ＝2.0，γ ＝1.0 was applied to fit the tracer break 
through curves using the above-mentioned optimiza-
tion method. The curve fitting allows us to look at the 
applicability of Fick’s law. Correlation coefficients, 
R2, between the results of the tracer breakthrough 
curves and the numerical solutions are given by:

R2 = 1−
Ci
exp −Ci

calc( )2
i=1

N

∑

Ci
exp −Cave( )2

i=1

N

∑
 (9)

where Cave is the average concentration for the 
prescribed travel time. The correlation coefficient 
is plotted against the fracture density in Figure 6. 
The correlation coefficients show a value close to 
1.0 when the fracture density is greater than 20,000. 
Thus, the tracer behavior can be regarded as Fickian 
for the higher fracture density range. The reason for 
this may be caused by the fracture distribution in the 
rock masses tends to become more or less uniform and 
ubiquitous with a number of fractures. On the other 
hand, when the fracture density decreases, the correla-
tion coefficient reduces rapidly and becomes almost 
zero at the lowest fracture density. In the case of the 
lower fracture densities, the tracer behavior can be re-
garded as non-Fickian, and no reasonable description 
can be provided by Fick’s law. The inhomogeneous 
distribution of fractures with the low fracture densities 
is considered to cause the non-Fickian behavior.

The fADE was used to fit the break through 
curves, using the optimization method. The fitted 
curves are shown in Figure 7, for the selected fracture 
densities. The travel time was normalized with the 
averaged value of the tracer travel times, which was 

Figure 5. Frequency distribution versus travel time for fracture distribution with different 
fracture densities.

 (e) C = 100 (f) No Fracture

 (c) C = 10,000 (d) C = 1,000

 (a) C = 50,000 (b) C = 20,000
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calculated using the first 20% of the total particles reached at the 
outlet. The results show that the solutions of the fADE provide 
a surprisingly good approximation to the tracer break through 

curves, even for the non-
Fickian responses. As 
given in Figure 6, the 
correlation coefficient is 
close to 1.0 even for the 
lower fracture densities 
(C < 20,000). Thus, it 
is understood that the 
fADE provides a useful 
means for characterizing 
the tracer responses in the 
fractured rock masses.

Figure 8 summarizes 
the best-fit constitutive 
variables in the fADE, 
including the space scale 
index α , the time scale 
index γ, and the fractional 
capacity coefficient b, as 
a function of different 
fracture densities. The 
numerical result shows 
that the best-fit value 
of α, which is an order 
of the space derivative, 
exhibits a complicated 
trend of variation with 
the fracture density, with 
α being less than 2.0. 
Further investigation is 
underway in order to 
clarify the relationship 
between α and the struc-
ture of rock masses.

It is noted that γ is ap-
proximately equal to 1.0 
for the higher fracture 
densities (C>20,000) 
and b gives an almost 
constant value, as shown 
in Figure 8. The integer 
value of γ indicates that 
the mass transport is 
Fickian, as discussed 
in Figure 6. When the 
fracture density becomes 
less than 20,000, γ re-
duces and b increases for 

the decreasing fracture density. The value of non-integer for γ 
indicates that the mass transport becomes non-Fickian with the 
lower fracture densities. When the fracture density decreases, the 
variance of the tracer travel time increases as shown in Figure 
9. A good approximation by the fADE demonstrates that the 
nonlocalities described by the time fractional derivative in the 
fADE can offer an appropriate mathematical description for 
the temporal fluctuation of tracer responses and the temporal 
heterogeneity.

Concluding  
Remarks 

The fractured res-
ervoir 3D model with 
fracture networks has 
been designed and de-
veloped to facilitate 
analyzing tracer tests. 
The techniques devel-
oped here can also be 
used to study the mass 
transport in natural res-
ervoirs through fractal 
geometry and matrix per-
meability. 

Our simulations of 
tracer tests in fractured 
reservoirs produce not 
only Fickian but also 
non-Fickian transport, 
which is generally shown 
in field observations. The 
shift of transport behav-
iors depend on fracture 
density. The fractional 
advection-dispersion 
equation provides a 
simple and accurate pre-
dictive model for tracer 
behavior in fractured 
reservoirs that exhibit 

heterogeneity. The non-Fickian transport will influence the tem-
poral fluctuation caused by nonlocalities. 
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