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AbstrAct

A computer program, which enables us to calculate the anoma-
lous non-Fickian contaminant transport in complex medium, has 
been developed. In recent years, prediction of mass transport in 
fractured porous media is becoming increasingly more important 
for the development of subsurface energy and material systems 
such as geothermal energy system and the geological disposal of 
radioactive wastes. Solute transport simulation can serve as an 
effective tool for predicting subsurface fluid flow but requires ac-
curate model derivation and reliable values of physical parameters. 
The conventional mathematical model of contaminant transport in 
the aquifer is based on the Fick's law of diffusion. However, for 
the fractured porous media, where solute moves primarily through 
open channels and slowly diffuses into the porous blocks, the con-
ventional model tends to predict smaller solute travel distance than 
that in the actual transport process. In contrast, the non-Fickian 
diffusion model can provide realistic representation of actual fluid 
flow in the heterogeneous media, such as fractured porous rocks. In 
the non-Fickian diffusion model, the governing equation is written 
in terms of fractional derivatives. In this study, in order to expand 
the applicability of the non-Fickian diffusion model to a variety 
of practical engineering problems, a numerical method has been 
developed. We provide a numerical solution of the equations by 
using implicit-finite difference method. The results obtained by 
numerical solution of the fractional differential equations were 
shown to be in a good agreement with analytical solutions.

Introduction
A numerical method, which enables us to calculate the non-

Fickian solute transport in a fractured porous aquifer, has been 
developed. In recent years, prediction of mass transport in frac-
tured porous media is becoming increasingly more important for 

the development of subsurface energy and material systems such 
as the geothermal energy system and the geological disposal of 
radioactive wastes. 

Unfortunately, as has been proven by a number of field and 
laboratory experiments, traditional constitutive equations (such 
as Fick’s law) and corresponding mathematical models, which are 
based on second order partial differential equations, do not always 
work well for modeling mass transport in complex heterogeneous 
fractured rocks (Keller et al. 1995)) and, therefore, new reliable 
models and approaches are needed. In this study, we present the 
mathematical model for the anomalous mass transport in fractured 
porous aquifer, which is based on fractional order differential equa-
tions, and solve it numerically. We provide a numerical solution 
of the equations by using implicit-finite difference method. 

Fractional Derivative
  The non-Fickian contaminant transport model is described 

by using fractional derivative. In fractional derivative, differen-
tial coefficients are described as noninteger number. The theory 
of the fractional derivative was developed more than 200 years 
ago, and several definitions have been developed (Samko et al. 
(1993)). In this study, we adapted the Caputo fractional derivative 
(Caputo(1967));
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where, Γ(x) is the Gamma function, and α the differential 
coefficient. To differentiate a fractional derivative equation, we 
used binomial theorem. From binomial theorem, for example, 
the Riemann-Liouville fractional derivative is differentiated as 
follows;
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Similarly, the Caputo fractional derivative can also be dif-
ferentiated taking the initial value into consideration(Chiba et 
al.(2006)).
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Numerical Approximation

Governing Equation
In this study, to expand the applicability of the non-Fickian 

diffusion model to a variety of practical engineering problems, a 
numerical method has been developed on the basis of fractional 
advection-dispersion equations. We take advantage of the Caputo 
fractional derivative equation in order to develop the numerical 
method for analyzing the fractional advection-dispersion equa-
tion in the fractured porous media. We provide a numerical 
solution of the fractional advection-dispersion equation using 

implicit-finite difference 
method. All numerical 
codes are written on For-
tran 90.

Figure 1 is a concep-
tual model of fluid flow 
in the fractured porous 
aquifer. In the x-direction 
of Figure 1, we adapted 
the following fractional 
advection-dispersion 
equation to describe con-
taminant transport in the 
fractured porous aquifer 
by using the Caputo frac-
tional derivative (Fomin 
et al.(2005));
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On the other hand, anomalous mass transport in the surround-
ing rocks is described the following equation;
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where, c and c1 are the concentration of solute in the fractured po-
rous aquifer and the surrounding rocks, respectively; D[L1+α/T-1], 
D1[L1+α/T-1] and D2[L1+ζ/T-1] are effective diffusivities; v[LT-1] is 
the fluid velocity; τ[T] is time, and 0 < α, γ, ζ, λ < 1. The order of 
fractional derivative α is close to 0, when the aquifer is a highly 
heterogeneous media. On the other hand, α = 1 is assumed when 
the media becomes homogeneous. γ predicts the continuous 
transfer of contaminant from mobile to immobile phase -(Schumer 
et al.(2003)).

Numerical Approximation
Equation (3) and (4) were converted to the non-dimensional form;
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where, C is the nondimensional concentration; X the spatial 
coordinates; t the nondimensional time; and Pe a Peclet number. 

The order of fractional derivative β predicts diffusion into the 
surrounding rocks. Above equations were differentiated by using 
binomial theorem, prior to the numerical calculations. Equation 
(5) and (6) are described by the Caputo fractional derivative; the 
concentration C is replaced by U (Chiba et al.(2006)).

As a result, equation (5) can be converted into the following form.
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Here,
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where, f is a numerical flux; C0 is a concentration at X = 0. 
Advection term was differentiated by using the Total Variation 
Diminishing(TVD) scheme(Yee and Harten(1987)).

Similarly, equation (6) can be described as follows;

 (11)

Here,

 (12)

 (13)

results

The results of numerical simulations are shown in Figures 2 
and 3 along with the analytical solutions. In the aquifer, the bound-
ary conditions were as follows;

  (14)

In the surrounding rocks, the boundary conditions were;

 (15)

Figure 1. Schematic model of fractured 
porous aquifer.
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All results are already converted to the non-dimensional 
form. In the Figures 2 and 3, the data points show the numerical 
results, and the continuous lines represent the analytical solu-
tions. It is demonstrated that the numerical results agree well 
with the analytical solutions for several values of difference 
coefficients.

conclusion
In this study, the reliable numerical algorithm for solving frac-

tional differential equations is developed. And also, a numerical 
simulation method based on the Caputo fractional derivative was 
developed using binomial theorem and considering the initial val-
ues. The accuracy of numerical method is validated by comparison 
with exact analytical solutions available for some particular cases. 
Numerical results are in good agreement with their analytical 
solutions for several differential coefficients.
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Figure 2. Comparison of the numerical and analytical solutions (fractured 
porous aquifer, α = 1.0, β = 0.5, Pe = 100, t = 15).

Figure 3. Comparison of the numerical and analytical solutions 
(surrounding rocks, t = 10).
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