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ABSTRACT

In the northwestern Great Basin, relatively high rates of  
recent (<10 Ma) west-northwest extension have absorbed a 
northwestward decrease in dextral motion along the Walker 
Lane.  Abundant geothermal fields and a number of  young 
(< ~7 Ma) epithermal mineral deposits in this region are 
most commonly situated along north- to northeast-striking 
structures.  This hydrothermal activity may result from a 
transfer of  northwest-trending dextral shear in the Walker 
Lane to west-northwest extension in the northern Great 
Basin.  Enhanced extension favors dilation and deep circula-
tion of  aqueous solutions along north- to northeast-striking 
structures oriented perpendicular to the extension direction.  
The individual belts of  geothermal fields probably reflect loci 
of  strain transfer.

Introduction
A broad zone of  distributed dextral shear 

stretches across western North America from the 
San Andreas fault system to the Basin and Range 
province (Figure 1).  In the western Great Basin, 
the Walker Lane belt is the principal system of 
northwest-striking, right-lateral faults (Stewart, 
1988).  As evidenced by GPS geodetic data, it 
accommodates 10-25% of the Pacific-North Amer-
ican plate motion (Bennett et al., 2003; Hammond 
and Thatcher, 2004).  To the south, the Walker 
Lane merges with the eastern California shear zone 
(Dokka and Travis, 1990).  To the northwest, the 
Walker Lane terminates in northeast California 
near the southern end of the Cascade arc (Figure 
1).  Today, the northwestern Great Basin lies within 

a transtensional setting, characterized by both northwest-di-
rected dextral shear and west-northwest-trending extension.  

Abundant geothermal fields (Coolbaugh et al., 2002) and 
a number of late Cenozoic epithermal mineral deposits (John, 
2001) reside in the northwestern Great Basin (Figures 2 and 
3, overleaf). However, volcanic activity in most of this region 
ceased 3 to 10 Ma, with significant magmatism ending in most 
areas by ~7 Ma.  And yet, many of the mineral deposits are 
younger than 7 Ma (Table 1, overleaf) and geothermal activity 
is prolific today.  This suggests that much of the recent min-
eralization and most of the ongoing geothermal activity are 
not linked to magmatism, or that significant young magmatism 
has gone unrecognized in the region.  If  magmatism is not a 
factor (which seems probable based on available data), why 
then is recent (< 7 Ma) hydrothermal and geothermal activity 
relatively widespread in this region?  

In this paper, we evaluate the tectonic setting, broad struc-
tural controls on geothermal systems, and preferred orientation 
of  mineralized structures in young (< ~7 Ma) epithermal 
mineral deposits of the northwestern Great Basin.  We con-
clude that the transtensional setting of this region facilitates 
geothermal and hydrothermal activity along north- to north-
northeast-striking structures, which are favorably oriented 
within the regional strain field.  
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Figure 1. Cenozoic tectonic evolution, western North America.  A. 30 Ma.  B. 10 Ma.  C. 0 
Ma. The box in (C) surrounds the locus of geothermal activity and several young (< 7 Ma) 
epithermal Au-Ag deposits in the northwestern Great Basin.  ACA, ancestral Cascade arc; CA, 
Cascade arc; MTJ, Mendocino triple junction; SAF, San Andreas fault.  
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Geologic Setting

As the western margin of North America evolved from a 
convergent to a transform plate boundary during Cenozoic 
time (Figure 1; Atwater and Stock, 1998), the northwestern 
Great Basin experienced widespread volcanism that coincided 
in part with regional extension and strike-slip faulting.  This 
includes 1) 31 to 23 Ma rhyolitic ash-flow tuffs associated with 
the “ignimbrite flare-up”, which swept southwestward across 
the Great Basin in Eocene to middle Miocene time; 2) 22 to 5 
Ma intermediate volcanism associated with an ancestral Cas-
cades arc, which retreated northwestward as the Mendocino 
triple junction migrated northward; and 3) 13 Ma to present 
bimodal volcanism related to ~east-west Basin and Range ex-
tension (Best et al., 1989; Christiansen and Yeats, 1992; Henry 
et al., 2004a;  John, 2001). However, volcanism waned rapidly 
in the late Miocene, with only local outpourings in most of 
the Great Basin after ~7 Ma (Henry and Faulds, 2004).  Only 
widely spaced, relatively small volcanic centers have erupted 
in the Quaternary. 

A complex three-dimensional strain field characterizes 
the northern Walker Lane and northwestern Great Basin 
(Figure 4).  Major structural elements in and adjacent to 
the northern Walker Lane include: (1) northwest-striking 
right-lateral faults, (2) east-northeast-striking left-lateral 
faults, (3) north- to north-northeast-striking normal faults 
and associated tilted fault blocks and half  grabens, and (4) 
localized east-trending fold belts.  Available data suggest that 
movement on all three sets of  faults and the folding have been 
broadly coeval, with activity continuing through the Quater-
nary.  Accordingly, strike-slip faults within the Walker Lane 
are intimately linked with major normal fault systems within 
the Great Basin (e.g., Oldow et al., 1994; Faulds et al., 2005).  
However, geodetic data (Bennett et al., 2003; Hammond and 
Thatcher, 2004), historical seismicity (dePolo et al., 1997), 
and present physiography indicate that northwest-trending 
dextral shear dominates the contemporary strain field of  
the Walker Lane belt, whereas west-northwest extension 
prevails farther east within the Great Basin.  The localized 
east-trending fold belts probably reflect minor approximately 
north-south shortening induced by northwest-directed dextral 
shear.  Bulk constrictional strain, involving a component of  
horizontal shortening, probably characterizes most trans-
tensional terranes (Dewey, 2000).  Thus, northwest-directed 
dextral shear, west-northwest-trending extension, and a minor 
component of  north-south shortening all contribute to the 
three-dimensional strain field within the northwestern Great 
Basin (Figure 4).  

Major extension and strike-slip faulting within the 
northwestern Great Basin is relatively young.  Early basin 
development, tilt fanning in half  grabens, and thermochro-

Figure 2. Geothermal belts in the Great Basin (from Faulds et al., 2004).  
Geothermal fields cluster in the Sevier Desert (SD), Humboldt structural 
zone (HSZ), Black Rock Desert (BRD), Surprise Valley (SV), and Walker 
Lane (WLG) belts. White circles are geothermal systems with maximum 
temperatures of 100-160oC; grey circles have maximum temperatures 
>160oC.  ECSZ, eastern California shear zone. Dashed lines (short dashes) 
bound the central Nevada seismic belt.  Abbreviations for individual 
geothermal fields: BR-DP, Brady’s and Desert Peak; DV, Dixie Valley; SS, 
Steamboat.

Figure 3. Young (< ~7 Ma) epithermal Au-Ag deposits in the northwestern 
Great Basin.  Long axes of crosses represent average strike of veins or 
mineralized structures (Table 1).  Squares denote deposits of known or 
possible magmatic origin; circles represent deposits that are not linked to 
magmatism. Abbreviations are defined in Table 1.  

Faulds, et al.
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nology indicate that extension began 10 to 15 Ma (Henry 
and Perkins, 2001; Surpless et al., 2002; Colgan et al., 2004).  
Early extension in this region (ca. 20-10 Ma) was probably 
characterized by a west-southwest-trending least princi-
pal stress (Zoback et al., 1981) in contrast to the present 

west-northwest-trending extension direction. 
Strike-slip faulting probably began 9 to 3 Ma.  
For example, ~3 Ma strata are as highly deformed 
as middle Tertiary rocks along major strike-slip 
faults in the northern Walker Lane (Henry et 
al., 2004b, 2005).  In addition, the onset of  
vertical-axis rotation of  fault blocks within the 
northern Walker Lane, as inferred from paleo-
magnetic data, is bracketed between ~9 and 5 
Ma just west of  the Carson Sink (Cashman and 
Fontaine, 2000).  These relations suggest that 
strike-slip faulting in the northern Walker Lane 
initiated 9 to 3 Ma, with possibly a later onset 
to the northwest. Thus, it would appear that the 
current strain field (Figure 4) in the northwestern 
Great Basin is no older than 9 Ma and possibly 
younger than 3 Ma in some areas.  

Dextral offset appears to decrease significantly 
toward the northwest within the Walker Lane.  In 
west-central Nevada, central parts of the Walker 
Lane accommodated 48-75 km of dextral offset 
(Ekren and Byers, 1984; Oldow, 1992).  Farther 
north, offset west-trending Oligocene paleoval-
leys, which are filled with 31-23 Ma ash-flow tuffs, 
indicate only 20-30 km of cumulative displacement 
(Faulds et al., 2005).  In northeast California and 
southern Oregon, cumulative slip decreases to 
essentially zero across a diffuse zone of discon-
tinuous, widely-spaced, northwest-trending faults 
(Grose, 2000).  The decrease in cumulative strain 
is compatible with a decline in present-day slip 
rates from approximately 12 mm/yr to 4-8 mm/yr 

between west-central Nevada and northeast California, as 
inferred from GPS geodetic data (Bennett et al., 2003; Ham-
mond and Thatcher, 2004).  

As the Walker Lane loses displacement to the northwest, 
dextral shear progressively bleeds off  into belts of west-north-
west extension in the northern Great Basin, including the 
central Nevada seismic belt, Black Rock Desert region, and 
Surprise Valley area (Figure 2; Faulds et al., 2004).  Individual 
strike-slip faults terminate in arrays of northerly striking nor-
mal faults.  Loci of strain transfer appear to correspond to 
prominent belts of geothermal systems, which partially overlap 
with areas containing abundant young (< ~7 Ma) epithermal 
mineral deposits.  

Geothermal Fields
Geothermal fields within the Great Basin are most abun-

dant in the northwestern part (Figure 2). Known geothermal 
systems within and adjacent to the Great Basin can be grouped 
into four northeast-trending belts and one northwest-trending 
belt (Faulds et al., 2004).  Only one belt lies entirely outside of 
the northwestern Great Basin.  Moreover, most of the high-
temperature (>160oC) amagmatic systems reside within the 
northwestern Great Basin.  This locus of geothermal activ-
ity is situated directly northeast of the central and northern 
parts of the Walker Lane, where dextral shear associated with 

Table I. Young (< ~7 Ma) Epithermal Mineral Deposits, Northwestern Great Basin.

Symbol Deposit Name Age
Average 
Trend

Trend 
Range

Source

BM Blue Mountain 3.9 Ma N0°E
Parr and Percival, 1991; 

Garside et al., 1993

CL Crofoot/Lewis 3.9 Ma N5°E
Ebert and Rye, 1997; 

Ebert et al., 1996
Sc Scossa 6.5 Ma N0°E Noble et al., 1987

HH Humboldt House Quaternary N16°E Coolbaugh et al., 2005

FC Florida Canyon 2.0 Ma N0°E
Hastings et al., 1988; 

Coolbaugh et al., 2005

WM Wind Mountain
Pliocene-

Quaternary
N12°E Wood, 1991

Wi Willard 6.1 Ma Noble et al., 1987

RC Relief  Canyon
Pliocene-

Quaternary
N18°W Wallace, 1989

DC Dixie Comstock <1 Ma N5°E
N0-
10°E

Vikre, 1994

MH McGiness Hills ca. 2.7 Ma N10°E Casaceli et al., 1986

GD*
Golden Dome-
Antelope Neck

7.1 Ma N10°E
Young and Cluer, 1992; 

Garside et al., 1993
SS* Steamboat 0 to 3 Ma N12°W Silberman et al., 1979
Cm* Como 6.8 Ma N56°E Vikre and McKee, 1994

MM* Monitor-Mogul 4.9 Ma N23°E
N0°E 

to 
N45°E

Prenn and Merrick, 1991

SP*
16 to 1 Mine, 

Silver Peak area
<6 Ma N55°E Keith, 1977

LV* Long Valley, CA 0.4 Ma ~N-S
Prenn and Muerhoff, 

2003
*Known or possible magmatic systems.

Figure 4. Diagrammatic strain ellipse for northwest-directed dextral shear 
within the Walker Lane and expected orientations of major structures 
(adapted from Sylvester, 1988). 

Faulds, et al.
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plate boundary motions dies out to the northwest (Figures 1 
and 2).  

From southeast to northwest, the northeast-trending belts 
have been referred to as the Sevier Desert, Humboldt, Black 
Rock Desert, and Surprise Valley geothermal belts.  The Sevier 
Desert belt trends ~N40oE and extends through southwest 
Utah. The Humboldt belt is a broad zone of geothermal sys-
tems that trends ~N50oE and extends through much of western 
and northern Nevada into southeast Idaho. The Humboldt 
belt includes a broad zone of east-northeast- to northeast-
striking sinistral-normal faults that has been referred to as 
the Humboldt structural zone (Rowan and Wetlaufer, 1981). 

Farther northwest, the Black Rock Desert and Surprise Valley 
geothermal belts trend ~N25-30oE. 

The Walker Lane geothermal belt is a northwest-trending 
zone of geothermal systems that follows the western margin of 
the Great Basin along the east front of the Sierra Nevada.  It is 
not as conspicuous as the northeast-trending belts.  Geother-
mal systems in the northern part of the Walker Lane belt could 
be included in the Humboldt and Black Rock Desert belts. 

Detailed investigations and reconnaissance studies (e.g., 
Blackwell et al., 1999; Johnson and Hulen, 2002; Faulds et al., 
2003; Wannamaker, 2003) show that north- to northeast-strik-
ing faults (N0oE-N60oE) control about 75% of the geothermal 
fields in Nevada and northeast California (Figure 5; Faulds 
et al., 2004).  This control is strongest for high temperature 
systems (> 160oC; Coolbaugh et al., 2002).  In the northwestern 
Great Basin, where the extension direction trends west-north-
west, most of the controlling faults strike north-northeast ap-
proximately orthogonal to the extension direction. 

Late Cenozoic Mineralization

Late Tertiary to Quaternary epithermal Au-Ag deposits are 
relatively common in the northwestern Great Basin. Consider-
ing the spatial and temporal distribution of volcanism in this 
region, many of the young (<7 Ma) epithermal deposits may 
not be related to magmatism.  Similar to dikes, mineralized 
structures typically develop along dilational fractures oriented 
orthogonal to the extension direction (Rehrig and Heidrick, 
1976; Drier, 1984). In the case of the northwestern Great Ba-
sin, it is important to note that the extension direction shifted 
from west-southwest to west-northwest in late Miocene-early 
Pliocene time (Zoback et al., 1981) concomitant with devel-
opment of northwest-directed dextral shear associated with 
Pacific-North American plate boundary motion.  

The approximate ages and general trends of mineralized 
structures in late Miocene to Quaternary epithermal deposits 
in the northwestern Great Basin are compiled in Table 1. Hy-
drothermal alteration and/or mineralization at some districts 
may span more than one age. The table includes deposits that 
are closely tied to synchronous igneous activity (e.g., Golden 
Dome and Steamboat), as well as those that are spatially associ-
ated with recent geothermal systems. These young (< ~7 Ma) 
Au-Ag mineral deposits formed at shallow depths, as evidenced 
by synsedimentary mineralization, sinter, and synsedimentary 
hydrothermal breccias.  Several low-sulfidation epithermal and 
hot-spring-type deposits have fine-grained chalcedonic veins, 
silica replacement bodies, or indications of boiling. At some 
deposits, mineralization occurs along Quaternary faults that 
bound or parallel the present mountain range. 

Whether of  known magmatic or possible amagmatic 
origin, veins and mineralized structures within these young 
(< ~7 Ma) epithermal mineral deposits have relatively consis-
tent strikes, with a mean of  N11oE and range from N18oW to 
N56oE (Table 1 and Figure 3). The average trend of  mineral-
ized structures reflects a predominant west-northwest-trending 
extension direction, which is compatible with the current strain 
field (Figure 4).  Examples of  north- to northeast-striking 
mineralized structures that parallel range-front normal faults 
include the Dixie Comstock, Wind Mountain, and Crofoot/
Lewis Mines.  

Discussion
Most geothermal fields (e.g., Desert Peak, Brady’s, Dixie 

Valley) and young (< ~7 Ma) hydrothermal systems related 
to epithermal Au-Ag deposits (e.g., Dixie Comstock and 
Crofoot-Lewis) in the northwestern Great Basin occur along 
north- to northeast-striking normal fault zones or mineral-
ized structures (Figures 3 and 5), where dilation is favored by 
northwest-directed dextral shear and west-northwest-trending 
extension.  Known magmatism generally ceased by ~7 Ma and 
may therefore not account for much of the geothermal activ-
ity and mineralization.  We suggest that the transtensional 
setting of  the northwestern Great Basin has induced deep 
circulation of meteoric fluids, which has in turn has facilitated 
widespread geothermal activity and epithermal mineralization 
in the region.  

Figure 5. Structural controls on known geothermal systems in Nevada and 
adjacent areas (from Faulds et al., 2004).  Long axes of crosses represent 
inferred strike of controlling fault for individual geothermal systems. 

Faulds, et al.
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The distribution of shear- and dilational-strain magnitudes 
within the Great Basin (Blewitt et al., 2003), as derived from 
GPS geodetic data, show that 1) shear strain is focused in the 
western part of the Great Basin along the Walker Lane belt; 
2) shear strain terminates northwestward within the northern 
Walker Lane, and 3) a broad area of high dilational strain 
lies directly northeast of the central and northern parts of 
the Walker Lane.  In the northern Walker Lane, major strike-
slip faults terminate in arrays of normal faults both within 
the Great Basin and along the eastern front of  the Sierra 
Nevada (Faulds et al., 2005).  It therefore appears that the 
northwestward decrease in displacement along the Walker 
Lane is accommodated by a transfer of dextral shear to ex-
tensional strain.  North- to north-northeast-striking normal 
faults absorb the northwestward decrease in dextral motion 
within the Walker Lane, diffusing that motion into the Basin 
and Range province.  The bleeding off  of dextral shear from 
the Walker Lane has probably accentuated rates of recent (<10 
Ma) west-northwest extension within the northwestern Great 
Basin (Figure 1c).  

Abundant geothermal fields and several young epithermal 
mineral deposits occur within the active transtensional setting 
in the northwestern Great Basin, beginning in the southeast 
where dextral shear starts to decrease and ending to the north-
west where dextral shear essentially terminates (Figures 2 and 
3). Steeply dipping, north-northeast-striking structures host 
most geothermal systems and many of the epithermal deposits 
(Figures 3 and 5).  This probably results from dilation and deep 
circulation of aqueous fluids along fractures oriented perpen-
dicular to the west-northwest-trending extension direction. The 
north- to northeast-trending geothermal belts and mineralized 
structures are also oriented orthogonal to the extension direc-
tion and may therefore reflect loci of strain transfer from the 
Walker Lane into the Great Basin. 
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