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ABSTRACT 

Matrix-fracture transfer functions are the backbone of 
any dual-porosity or dual-permeability formulation. The chief 
feature within them is the accurate definition of shape factors. 
To date, there is no completely accepted definition of matrix- 
fracture transfer function. Many definitions of shape factors for 
instantly-filled fractures with uniform pressure distribution have 
been presented and used; however, they differ by up to five orders 
of magnitude. 

Based on a recently presented definition of transfer function, 
time-dependent shape factors for pressure driven flow and for 
water imbibition are proposed. Also new matrix-fracture transfer 
pressure-based shape factors for instantly-filled fractures with non- 
uniform pressure distribution are presented in this paper. These are 
the boundary conditions for a case for porous media with clusters 
of parallel and disconnected fractures, for instance. 

These new pressure-based shape factors were obtained by solv- 
ing the pressure diffusivity equation using non-uniform boundary 
conditions. This leads to time-dependent shape factors because 
of the transient part of the solution for pressure. However, ap- 
proximating the solution with an exponential function, one obtains 
constant shape factors that can be easily implemented in current 
dual-porosity reservoir simulators. They provide good results for 
systems where the transient behavior of pressure is short (a case 
commonly encountered in fractured reservoirs). 

Introduction 

Modeling multiphase flow in fractured porous media relies 
on the accurate description of matrix to fracture transfer of water. 
The rate of mass transfer between the rock matrix and fractures 
is significant, and calculation of this rate, within dual-continuum 
models, depends on matrix-fracture transfer functions incorporat- 
ing the shape factor. 

Typically, matrix-to-fracture transfer functions are obtained 
by assuming all fractures to be instantaneously immersed in wa- 
ter (instantly-filled), with a uniform fracture pressure distribution 
under pseudo-steady state conditions. The result is constant, time- 
independent, shape factors. Clearly, this is not necessarily true. 
Partially immersed fractures and other unsteady-state conditions 
do not lead to constant shape factors. The current formulations 
for modeling flow in fractured porous media need to be recon- 
sidered. 

Decades of controversy exist regarding the appropriate 
shape of relative permeability and capillary pressure curves for 
multiphase flow in fractures (for instance refer to Home et al., 
2000; Akin, 2001). Transfer functions and shape factors have not 
received sufficient attention. Enormous discrepancies also exist 
for the value of shape factors proposed by different investigators. 
For blocks of size L, for example, values range from 4/L2 (Ka- 
zerni et al., 1976) to 12L2 (Warren and Root, 1963; de Swaan, 
1990) for one-dimensional systems, and from 12L2 (Kazemi et 
al., 1976) to 60L2 (Warren and Root, 1963; de Swaan, 1990) 
for three-dimensional systems. A full discussion of shape factors 
and transfer functions can be found in Rangel-German (2002). 
Typically, matrix-to-fracture transfer functions are obtained by 
assuming all fractures to be instantaneously immersed in water 
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Figure 1. Representation of the initial and boundary conditions of a 
matrix block surrounded by equidistant parallel fractures that are filled 
instantly. 
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(instantly-filled), with a uniform fracture pressure distribution 
under pseudo-steady state conditions, as shown in Figure 1. The 
result is constant, time-independent, shape factors. Clearly, this 
is not necessarily true. Partially immersed fractures and other 
unsteady-state conditions do not lead to constant shape factors. 
The current formulations for modeling flow in fractured porous 
media need to be reconsidered. 

P h y si ca I I y Co r r ec t Transfer F u n c t i on s 

Rangel-German (2002) presented extensive experimental and 
analytical information to clarify the understanding of matrix-frac- 
ture transfer. Rangel-German and Kovscek (2003) pointed out the 
need for expressions for transfer functions that account for real- 
istic boundary conditions: partially covered or totally immersed 
boundaries; unsteady and pseudo-steady state; and uniform and 
non-uniform pressure distribution in the fractures, as a function 
of parameters that can be obtained either in the laboratory or the 
field with high certainty. 

'They found two different modes of matrix and fracture fill-up. 
Relatively slow flow through fractures is found when fracture to 
matrix fluid transfer is rapid, fracture aperture is wide, and/or 
water injection is slow. In this regime, fractures fill slowly with 
fluid and the regime is referred to as a "filling fracture" (the re- 
covery scales linearly with time). On the other hand, relatively 
low rates of fracture to matrix transfer, narrow apertures, and/or 
high water injection rates lead to rapid flow through fractures. 
This regime is labeled "instantly filled," and recovery scales with 
the square-root of time. 

They presented a transfer function that includes the matrix-to- 
fracture mass transfer due to fluid-flow as a result of the pressure 
difference created by the step-change at the fractures, and the mass 
transfer due to imbibition, where capillary pressure is the only 
driving force. Considering both processes in multiphase flow: 

where z, is the flow rate in an element Vof bulk reservoir volume, 
P , ~  is the volumetric average matrix pressure and pf is the pressure 
in the fracture. The shape factor, 0, reflects the geometry of the 
matrix elements (traditionally in pseudo-steady state, single-phase 
flow) at all times. oP is the shape factor based on pressure such 
as those presented by Chang (1993) and Lim and Aziz (1995), 
whereas os is a time-dependent shape factor due to imbibition, pre- 
sented in a different paper (Rangel-German and Kovscek, 2003), 
including both filling- and instantly-filled fracture regimes. A plot 
of 0 s  is shown in Figure 2. It is important to emphasize that both 
os, and oP, are time-dependent. 

This definition of transfer function leads to a better under- 
standing of the discrepancy among the different values for shape 
factors. It indicates that authors have considered different physical 
processes while calculating such factors. For instance, although 
Chang's (1993) solution to the pressure diffusivity equation is 
mathematically correct (and complete), it accounts exclusively 
for the mass transfer due to expansion of single-phase fluids as a 
result of the pressure difference created by the step-change at the 
instantly-filled fracture. On the other hand, Kazemi et al.'s (1 976) 
shape factors were derived while obtaining dimensionless scal- 

ing times for imbibition-dominated oil recovery processes, where 
capillary pressure is the only driving fluid force. Each process 
has different weight depending on the location, properties, and 
characteristics of the reservoir; however, both processes have to 
be considered in order to achieve accurate modeling of the matrix- 
fracture mass transfer in fractured porous media. 

Unsteady State Flow With Non-Uniform 
Boundary Conditions 

The pressure diffusivi ty equation for a three-dimensional 
anisotropic flow between the rock matrix and the fracture in the 
x, y ,  and z Cartesian coordinates is: 

where ki is the permeability in the i = x ,  y ,  and z directions, (b is 
the porosity, p is the viscosity and ct is the compressibility. With 
the initial conditions shown in Figure 1, Eq. 2 can be solved for 
both the transient and the pseudo-steady state flow periods under 
different boundary conditions. Chang (1993) and Lim and Aziz 
(1995) found the solutions for uniform pressure distribution in 
instantly-filled fractures. A plot of the shape factor versus dimen- 
sionless time is shown in Figure 2. 
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Figure 2. Comparison of the imbibition-based shape factor, os, versus 
dimensionless time for both filling-fracture and instantly-filled fracture 
experiments with the analytical approximation (log-log coordinates). (from 
Rangel-German and Kovscek, 2003). 

A more general situation of the cases above is that of frac- 
tures filling instantly (totally immersed) but having non-uniform 
pressure distribution; that is, the pressure within the fractures in 
Figure 1 is constant initially, but a gradient exists for any time 
greater than zero (t > 0). This is the case for porous media with 
clusters of parallel and disconnected fractures. Thus, the initial 
and boundary conditions for this case are 

p n , = p i , - O I x I L ,  t = O  (3) 
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(4) 

To solve this case, the solution for the diffusion equation (Eq. 
2) was obtained for the boundary conditions described by Eqs. 3 
and 4. For one-dimensional flow, it reads (Crank, 1975) 

(5) -D( 2n + IG2t 

n=O 

where M, is the total amount of mass that has entered the system 
at time t, and M, is the amount of mass after infinite time. In this 
case M, = 1{1/2(pf, + pp) - pi}. Eq. 5 is similar to Eq. 4.23 in 
Crank (1975) with the proviso that L signifies the whole thickness 
of the membrane (Crank, 1975). Because Eq. 5 is written on a unit 
volume basis, the left-hand side can be replaced with the ratio of 
the density difference at time t compared to the initial state and 
the expected increment at infinite time (Lim and Aziz, 1995): 

The assumption of a small and constant compressibility fluid 
implies 

(7) 

where the superscript “0” refers to a standard or reference condi- 
tion. Combining Eqs. 5,6,  and 7, we obtain: 

whereifis equal to (pfl + pf2)/2. 
Strictly, the pressure-based shape factor, o,,, should be obtained 

by taking the ratio of the flow rate at x = L over the pressure dif- 
ference kp -J’). This procedure leads to a very complex form 
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Figure 3. Behavior of the pressure change-driven shape factor, op, for 
instantly-filled fracture regime. One-dimensional and uniform pressure 
boundary conditions. 

of the shape factor, especially for two- and three-dimensional 
flow. However, it is important to point out that the dimensionless 
solution of the total amount of mass that has entered the system 
for non-uniform boundary conditions has the same form as that 
for uniform boundary conditions, so taking the ratio of these 
solutions we obtain: 

I .  r- i 

This ratio indicates that the solution for non-uniform boundary 
conditions is directly proportional to that for uniform boundary 
conditions. Thus, following a procedure similar to that of Lim and 
Aziz (1 993, the solution is approximated by taking the first term in 
the infinite series in Eq. 8 to eliminate the time dependence of the 
function, and the term inside the exponential term (dimensionless 
group for time) can be modified to incorporate easily the effect of 
the reservoir properties, block size or boundary conditions, so for 
non-uniform boundary conditions that cause a block mass intake 
equivalent to that of uniform boundary conditions and half-sized 
blocks, one obtains: - r - 1  

- = 1 - 0.81057exp Prn - - P. 
P j  - Pi 

Taking the derivative of Eq. 10 with respect to t and simplify- 
ing yields 

For a strictly dual-porosity model, zw can be expressed as: 

7, = - V @ c -  dPm 
at 

Substituting Eq. 11 into Eq. 12 results in the following matrix- 
fracture transfer function: 

7, =-- (13) 

As Lim and Aziz (1995) pointed out, this kind of derivation 
leads to an equation similar to the typical expression for matrix- 
fracture transfer function (Warren and Root, 1963): 

but the assumption of pseudo-steady state was not made in its 
derivation, Here, we extend the unsteady state solution to a set of 
parallel fractures with non-uniform pressure distribution. Compar- 
ing Eq. 13 and Eq. 14, the shape factor for one set of orthogonal 
fractures is: 

o=- 4z2  (15) 
L2 

Figure 4, oerleaf, shows dimensionless pressure versus 
dimensionless time ( t D  = +) for both the uniform and variable 

pressure distribution. The lines with symbols in Figure 4 are the 

a t  
Lx 
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Figure 4. Analytic solution of the one-dimensional diffusion in a plane and 
its approximations. 

results for the analytical solution, whereas the solid lines are the 
exponential approximations to the analytical solution derived by 
taking the first term of the summation. From Eq. 6, it is appar- 
ent that Figure 4 is analogous to a plot of the standardized water 
saturation in the matrix block, Sw/Sw,,,, against time. The results 
obtained for variable pressure in the fractures represent a faster 
recovery process. Correspondingly, the shape factor shown in Eq. 
15 is larger than that obtained for constant pressure distribution 
within fractures. Figure 4 also includes experimental data for the 
imbibition of water into matrix from a fracture aperture of 0.025 
mm and flow rate of 2 crnVmin (Rangel-German and Kovscek, 
2002). The block water saturation is standardized to the maximum 
value (S,,,, = 62%). This experiment behaved in a 1-D fashion. 
The constant shape factor formulation, leads to a good match for 
times greater than roughly tD equal to 0.25. 

Satisfactory agreement is not necessarily found for every 
instantly-filled fracture case. Cases where the transient behavior 
takes a relatively long time to develop are not well matched by 
the exponential approximation. The exponential approximation 
in Figure 4 never reaches zero water saturation (or dimensionless 
pressure, in the analogous pressure distribution problem). 

Similarly, results for both two and three sets of orthogonal 
fractures under unsteady state conditions with different pressure 
distributions are derived (Crank, 1975): 

-=I- 4 
MW 

and 

6 %( b c o s n n - u r e x p {  -Dn:rf} 
( b  - n2(u2 + u b + b 2 )  n=O n 

where the a,,’s are the roots of Jo(n~.,,) = 0. Jo(x) is the Bessel func- 
tion of the first kind of order zero, and a and b are the inner and 
outer limits of the cylinder or sphere approximation, respectively. 
Note that for two-dimensional flow and a = 0 (solid cylinder), the 
solution reduces to Eq. 5.23 in Crank (1975) and the plane sheet 
solution is obtained for b/a = 1. Similarly, for three-dimensional 
flow and a = 0 (solid sphere), the solution reduces to Eq. 6.20 in 
Crank (1975), and also the plane sheet solution is obtained for 
b/a = 1. 

Assuming that the equivalent radius, a, of the cylinder is the 
radius that yields the same volume as a bar with an L x L square- 
shaped cross-section, i.e. L =(n;u2)1/2, then the volume is used as 
a basis for equating the two geometries (Lim and Aziz, 1995), 
therefore, a = 0.564L; and similarly a = 0.620L for a spherical 
system. Following the procedure described in Eq. 6 through 14, 
the following shape factors result for two and three sets of or- 
thogonal fractures: 

1 2n2 o=- 
12 L 

Figure 5 shows plots of SJS,,,,, against dimensionless time 
for both uniform and variable pressure distributions. The lines 
with symbols are the results for the analytical solutions, whereas 
the solid lines are the exponential approximations to the analytical 
solutions. Again, the results obtained for variable pressure in the 
fractures represent a faster recovery process. Correspondingly, 
the shape factor shown in Eq. 19 is larger than that obtained 
for constant uniform pressure within fractures by Lim and Aziz 
(1995): 37WL2. 

Discussion 

The analytical solutions to the diffusion equation, their ap- 
proximations, as well as the shape factors obtained for unsteady 
state and non-uniform pressure distribution within the fractures 
were developed with the idea of obtaining an exhaustive set of 
shape factors (and therefore transfer functions) covering one- to 
three-dimensional system and for different boundary conditions. It 
appears unlikely, however, that this approach yields shape factors 
approximating the behavior for filling fractures. Figure 6 shows a 
comparison among the experiment with a fracture aperture of 0.1 
mm and flow rate of 1 cm3/min with analytic solutions and approxi- 
mations of the diffusion equation for different dimensions and 
boundary conditions. This experimental data lay well within the 
filling-fracture regime (Rangel-German and Kovscek, 2002). For 
purposes of clarity, solutions for three sets of orthogonal fractures 
(shown in Figure 5) are not included. These curves fall above those 
shown below. None of the solutions in Figure 6 match the case of 
a filling-fracture. For such cases, the method recently presented 
by Rangel-German and Kovscek (2003) should be used. 

Conclusions 

An exhaustive set of matrix-fracture transfer functions for 
instantly-filled fractures under pseudo-steady and unsteady state 
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Figure 5. Analytic solutions of the diffusion in a three-dimensional system 
and its approximations. 
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Figure 6. Analytic solutions and approximations of diffusion equation for 
different dimensions and boundary conditions. 

conditions with uniform and non-uniform fractures conditions 
were derived for one-, two- and three- sets of orthogonal fractures. 
These transfer functions were verified with experimental data for 
a wide range of flow rates and fracture apertures, considering 
both filling- and instantly-filled fractures presented by Rangel- 
German and Kovscek (2002). Good agreement was found for 
the instantly-filled fracture cases. However, satisfactory agree- 
ment is not necessarily found for every instantly-filled fracture 
case. Cases where the transient behavior takes a relatively long 
time to develop will not be well matched by the exponential ap- 
proximation. The exponential approximations never reach zero 
dimensionless pressure. 

Shape factors in Eq. 1 are both time-dependent. We recognize 
that the shape factors corresponding to the pressure-driven expan- 
sion presented here are simple (single-phase flow) approximation 
to complex problems. However, in cases where the transient be- 
havior of pressure is short, these constant (time-independent) 
shape factors lead to reasonable results, and their implementation 
in current dual-porosity models is rather simple. Shape factors 
corresponding to the imbibition part of Eq.’ 1 and those for par- 
tially-covered fractures should be obtained by means of the method 
presented by Rangel-German and Kovscek (2003). 
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