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ABSTRACT 

The development of an indirect transient boundary element 
method (BEM) is described. The approach is formulated within 
the framework of non-isothermal poroelasticity and can be used 
to solve coupled porothennoelastic problems. The fundamental 
solutions and numerical procedures are described and some 
applications are presented. In particular, the model is used to 
study the stress and pore pressure distributions around a wellbore 
drilled in a hot rock. There is good agreement between the nu- 
merical predictions and analytical results. The analysis is use- 
ful for determining the conditions for wellbore failure while 
drilling as well as for calculating fracture initiation pressure for 
hydraulic fracturing. 

I n t roduc ti on 

When rocks are heatedcooled, the bulk solid as well as the 
pore fluid tend to undergo expansionlcontraction. A volumetric 
expansion can result in significant pressurization of the pore 
fluid depending on the degree of containment and the thermal 
and hydraulic properties of the fluid as well as the solid. The 
net effect is a coupling of thermal and poromechanical processes 
that plays an important role in many scientific and engineering 
activities related to production of geothermal resources. 

The theory of poroelasticity couples pore pressure and solid 
stress fields in deformable fluid saturated porous rocks (Biot, 
1941). In the isothermal poroelastic theory, the time dependent 
fluid flow is incorporated by combining the fluid mass conser- 
vation with Darcy’s law; and the basic constitutive equations 
relate the total stress to both the effective stress given by defor- 
mation of the rock matrix and the pore pressure arising from 
the fluid. Meanwhile, in many geomechanics problems such as 
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studies concerned with initiation and propagation of hydraulic 
fractures and borehole stability analysis in high-temperature 
rocks, thermally induced pore pressure and stresses also play 
an important role in rock deformation and fracture. A 
thermoelastic approach combines the theory of heat conduction 
with elastic constitutive equations coupling the temperature field 
with the stresses (Norris, 1992). In order to consider the influ- 
ence of a temperature gradient on both pore pressure and stresses, 
it is necessary to use a non-isothermal poroelastic theory, or 
poro-thermoelasticity (Palciauskas and Domenico, 1982). 

Governing Equations of Poro-Thermoelasticity 

From the constitutive, balance, and transport laws, the gov- 
erning equations of poro-thermoelasticity can be written as 
(Palciauskas and Domenico, 1982; Booker and Smith, 1993; 
Berchenko, 1998): 

Navier Equation: 
1 
3 

GV2ui + -(G + 3K)&,i = CXP,~ + K p J j  

Difision equation for pore pressure p :  

Diffusion equation for temperature T- 

dt 
In the above equations, ui denotes the solid displacement 

vector, the total strain tensor, p the pore pressure, and T the 
temperature. The constants G, K, a, p, 9 p, 9 K ,  M, and cT rep- 
resent shear modulus, drained bulk modulus of poroelastic ma- 
trix, Biot’s poroelastic constant, drained thermal expansivity of 
the solid, thermal expansivity of the undrained saturated rock, 
mobility coefficient, Biot’s modulus, and thermal diffusivity, 
respec ti vel y. 

Biot’s coefficient, a, can be computed using 
a = Z - (K / K, ) , where K, is the bulk modulus of solid grains; 
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P,is defined as P, =aPs +(Pf -Ps)n, where Pf is thermal 
expansion coefficient of the fluid and n is porosity; is de- 
fined as K = k /p, where k is dynamic permeability and p is 
fluid viscosity. 

It should be noted that for most rocks, heatingkooling pro- 
duces thermal stresses and changes pore pressure, but stress and 
pressure changes do not significantly alter the temperature field 
(Wang, 2000) so that they are not coupled to the diffusion equa- 
tion for the temperature. 

A few analytical procedures have been developed and used 
to solve geomechanics problems of interest involving coupled 
thermal and poromechanical problems (e.g., Ghassemi and Diek, 
2002; Wong and Papamichos, 1994). However, many problems 
formulated within the framework of poro-thermoelasticity are 
not amenable to analytical treatment and need to be solved nu- 
merically. The boundary element method (BEM) or the bound- 
ary integral equation formulation has been used extensively for 
the poroelastic and thermoelastic problems (e.g., Cheng, et. al., 
2001; Ghassemi, et. al., 2001). The advantage of the method is 
that it reduces the problem dimensionality by one thereby re- 
ducing the computational efforts significantly. 

The indirect BEM has two sub-formulations, namely, the dis- 
placement discontinuity (DD) method and thefictitious stress (FS) 
method. The former is particularly useful for modeling fractures 
and fracture propagation. This paper is concerned with wellbore 
failure and fracture initiation using a classical approach and thus 
its focus is the fictitious stress method. And although DD and FS 
methods have totally different physical meanings, they are al- 
most identical in structure and with some modifications the fol- 
lowing discussion can also be applied to the DD method. 

Poro-thermoelastic Fictitious Stress Method 

The FS method is based on the fhdamental solutions for a point 
force, point fluid source, and point heat source applied within 
an infinite porothermoelastic solid. Fictitious forces, fluid 
sources, and heat sources are distributed over the boundary Tof 
the problem domain and the principle of superposition is used 
to add their effects such that the boundary conditions of the 
problem are satisfied. This requires both spatial integration along 
the boundary r and temporal integration along time because of 
the time-dependent nature of the heat/fluid diffusion and 
deformation processes. 

Suppose the problem boundary, r (e.g., the borehole wall) 
is divided into N straight elements (Figurel) and the time at 
which a solution is desired, t, is divided into M time steps. Then, 
at a given time the shear stress ( as), normal stresses ( On), pore 
pressure (p), and temperature (T) at the midpoint of the ith ele- 
ment can be expressed in terms of the stresses, pore pressure, 
and temperature induced by the continuous fictitious forces and 
fluidheat sources applied on all other elements ( j ) over time: 

M N  

i = I  toN (6) 
I t: j= l  

M N  

I t: j=l  

where F’, F ,  9 0’ , and (9’ are strengths of shear fictitious force, 
normal fictitious force, fluid source., and heat source at thejth 
element, respectively. The terms , etc. are the boundary in- 
fluence coefficients. The coefficient Gys, for example, gives the 
shear stress at time t at the midpoint of the ith segment due to a 
constant unit shear fictitious force ( Fv ) applied to thejth seg- 
ment at time z . 0; is the shear stress due to a constant unit 
fluid source strength (0) at the jth segment. And is the 
shear stress due to a constant unit heat source of strength ((9) at 
thejth segment. The coefficients for stress, pore pressure, and 
temperature due to a constant distribution of sources and forces 
on a straight element are obtained by integration of the funda- 
mental solutions in space and time. 

The proposed coupled poro-thermoelastic BEM is based on 
two kinds of fundamental solutions (i) the pore pressure and 
stresses induced by a unit continuous fluid point source and by 
a unit continuous point force in poroelastic media (e.g., Curren 
and Carvalho 1987); (ii) the temperature, pore pressure, and 
stresses induced by a unit continuous heat point source in a 
poroelastic medium. The latter are given by the following ex- 
pressions (Berchenko, 1998): 

p = P 
47CK*s 

= ~ [ h l F ( x i ; x j ; ~ 2 ) - F ’ ( ~ i ; x j ; ~ 2 ) ]  for = 1 (12) 
4XK s 

2 2  r2 xi + x j  

In above equations, k2is given by c2 = - = -; 
r 4cft 4cft 

K* is thermal conductivity; o2 =,T, C’ where cfis hydraulic 
L 

diffusivity. Other constants are defined as: Po = P, - 3@SK . 
3 K + 4 G ’  

Functions used in above equations are: 

00 

Ei(x) = I -dz (exponential integral function) 
x z  
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pore pressure are studied. Thus, pore pressure and stress load- 
ings are not considered, meaning that the far field pore pressure 
and stresses are considered to be zero. Due to symmetry only a 
quarter of the wellbore is modeled and 10 elements are used to 
approximate one-quarter of the circular boundary. Number of 
time steps is 10 for each computation and the time step length, 
At ,  is adjusted accordingly. The input parameters are shown in 
Table 1. 

Figures 1-4 illustrate the profiles of temperature, induced 
pore pressure, induced tangential stress, and radial stress around 
the wellbore. Analytical results are also shown for comparison. 
As can be observed, the numerical results are in good agree- 
ment with the analytic solution. This demonstrates the validity 
of this numerical approach for poro-thermoelastic problems. 

Figure 1 shows the transient temperature distribution; it is 
typical of a conductive heat transfer situation. The formation is 
gradually cooled off when the borehole temperature is suddenly 
reduced to a constant value. Figure 2 is the distribution of in- 
duced pore pressure. One can see that a significant pressure 
drop is generated near the borehole at early times. With time, 

All influence coefficients are obtained by spatial integra- 
tion of the fundamental solutions assuming a particular distri- 
bution of forces and source along an element. In the present 
formulation, it is assumed that the distribution of forces and 
sources are constant in space and time over an element. Also, it 
is assumed that the boundary elements are straight segments 
with the collocation points located at the center of each ele- 
ment. The space integrals are performed analytically and nu- 
merically. The time integration is performed using a time march- 
ing approach that solves the problem at the end of a time step 
and keeps a solution history (Banerjee and Butterfield, 1981) 
for the next step. That is, the time integration is carried out in a 
convolution sense, so that no internal discretization would be 
necessary. This process yields a system of linear algebraic 
equations (4-7) that can be solved at each time step for the in- 
crement of unknown heat sources, fluid sources, and fictitious 
forces. As mentioned previously, the influence of deformation 
and pressure variations on the temperature field can be neglected. 
Therefore, the temperature field and heat flux are calculated 
independently. 

Examples 

Consider a borehole with radius R = 0. l m  in a reservoir at a 
temperature of 200°C. The wellbore wall is suddenly cooled by 
water and maintained at OOC. For clarity of presentation and 
investigation of the role of temperature, only induced stress and 

Table 1. Input Parameters. 

Modulus of elasticity 2.06*104 MPa 
Poisson's ratio 0.20 

v u  Undrained Poisson's ratio 0.31 
K, Solid bulk modulus 4.82*104 Mpa 
Kr Fluid bulk modulus 2.50*103 Mpa 
cT Thermal diffusivity 1.60* 1 0-6 m2/sec 

fj, Solid thermal expansivity 1.80* mPC 
'f Fluid thermal expansivity 3.00*10-4 mPC 

1/ Unit weight of fluid 9.8*103 kg/m3 
k Dynamic permeability 7.66*10-8 d s e c  
B Skempton's constant 0.55 1 
M Biot modulus 1.427* lo4 Mpa 

Heat capacity 1.169* lo6 Joule/(kg*"C) 

Porosity 0.143 

Fluid viscositv 3.0" 10" kd(m*sec*) 

Y 

t 

Temperature field by cooling from 200°C to 0°C 

I I I I I I I I 1 

1 

-20 1 I I I I I 
I I I I I 1 

1 2 3 4 5 6 7 

Normalized radial distance ( r l  R )  

Figure 2. Distribution of temperature around the borehole. 
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Induced pore pressure by cooling from 2OO0C to O°C 
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Figure 3. Distribution of induced pore pressure around the borehole. 

Induced tangential stress by cooling from 2OO0C to O°C 

-1 5 

-20 

-25 

the pore pressure will gradually recover its original state. Fig- 
ure 3 presents the thermally induced tangential stress. With cool- 
ing, a significant tangential tensile stress is induced around the 
wellbore. This is caused by the tendency of the rock to shrink 
near the borehole wall. Away from the borehole wall, the mag- 
nitude of the induced tensile stress decreases and at some point 
inside the formation changes its sign, turning into a compres- 
sive stress. This is because the shrinkage of the material at the 
inner face of the borehole geometry, due to cooling, tends to 
pull on the outer rock thus inducing a compressive stress. The 
compressive zone fades away with distance and gradually moves 
away from the borehole. Figure 4 illustrates the thermally in- 
duced radial stress. A significant radial tensile stress peak is 

-8 

-1 0 

Induced radial stress by cooling from 200°C to O°C 
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1 2 3 4 5 6 7 

Normalized radial distance (rR) 

Figure 5. Distribution of induced radial stress around the borehole. 
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Figure 6. Maximum opening of a suddenly 
pressurized and cooled crack. 

produced inside the formation. At later times, the tensile stress 
zone moves inside the formation while the magnitude of the 
"peak" increases. 

From above, one can expect that the potential for fracturing 
of the wellbore wall in shear increases. This is because the maxi- 
mum difference between the tangential and radial stresses oc- 
curs at the wellbore wall. As for tensile failure, the induced tan- 
gential stresses will lower the pressure necessary to fracture the 
rock in tension. Also, the fracturing will always initiate from 
the wellbore boundary because the maximum tensile stress oc- 
curs there. Moreover, the extent of the tensile stress zone that 
develops inside the formation increases with time facilitating a 
time-delayed fracture development. 

822 



Zhang and Ghassemi 

Table 2. Input data for the fracture problem. 

Far Field Condition 
~ 

Stresses 
TemDerature 

0.0 MPa 
200 "C 

Boundary Condition 

Normal Stress 
TemDerature 

82.73 MPa 
0°C 

Modeling Condition 
Crack dimension (-5.0,O.O) to (5.0,O.O) 
Total number of elements 15 
Symmetric with Y axis ? No 
Time step length At 360s, 3600s, 14400s 
Number of time stens 2000 

Table 3. Other Relevant Input Parameters. 

G Shear modulus 8.273*104 MPa 
V Poisson's ratio 0.1 
cT Thermal diffusivity 1.39* IO" m2/sec 
p, Thermal expansivity 1.20* 1 o - ~  m/"C 
C Heat CaPacitv 1 .60*106 Joule/(kg*"C) 

Efforts are underway to develop a porothermoelastic DD 
program also. The coupling between temperature and fluid dif- 
fusion has not been implemented at the present time. Thus, the 
current version of the DD model is purely thermoelastic. Nev- 
ertheless, it is used here to underline the significance of thermal 
stresses in fracture propagation. For the purpose of illustration, 
consider a uniformly cooled and pressurized crack in a rock 
mass. The length of the crack is 10.0m and the input parameters 
are shown in Tables 2 and 3. 

The normalized maximum opening, D*= GD/(PL), (at the 
center of the crack) vs. normalized time, t* = C T t  / ~ 2 ,  is plotted 
in Figure 5.  Note that D(t) is the opening at midpoint of the 
crack and G is the shear modulus, P is normal stress at crack 
face, and L is the half-length of the crack. As can be observed in 
the figure, the crack opens as a result of cooling and pressuriza- 
tion. The fracture response is transient and the crack opening 
gradually increases due to the shrinkage of the rock. The open- 
ing increases and approaches a maximum value asymptotically. 

The results presented herein illustrate the importance of the 
role of temperature in hydraulic fracture initiation and propa- 
gation. Cooling of the wellbore can lead to fracturing; it also 

increases the stress intensity at the fracture tip leading to crack 
growth. The combined effects of fluid pressure and tempera- 
ture on fracture opening and propagation will be examined in 
the future. 
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