NOTICE CONCERNING COPYRIGHT RESTRICTIONS

This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material.

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

GEOTHERMAL DATA

GTHR 007

t.g.i. US

DATA ANNOUNCEMENT

00043 82-TGB-16

> Lib

GEOTHERMAL GRADIENT DATA AND MAP FOR THE UNITED STATES

The National Geophysical Data Center (NGDC) has produced a new multicolor Geothermal Gradient Map of the United States (exclusive of Alaska and Hawaii). This map, a joint publication of NGDC and Los Alamos National Laboratory (LANL), replaces the 1980 version of the map published by LANL. The new map presents a compilation of over 1,700 wells that have been measured for temperature at depths greater than 50 m. Temperature/depth profiles are linear, or composed of linear segments which reflect changes in the thermal conductivity of the rocks, rather than hydrology. The data are displayed on two sheets (Eastern and Western U.S.) at a scale of 1:2,500,000 in a format which shows the location, depth, and gradient of each well in a single color-coded symbol (see Figure 1). Each well is numbered and keyed to a table showing latitude, longitude, well depth, gradient, heat flow (where available), thermal conductivity (where available), and a reference (see Figure 1). Over 200 references have been consulted and are presented with the data.

In areas where wells are clustered, an average gradient for the area was determined. If the gradients in an area are similar for similar depth intervals, the gradients from several boreholes were averaged. In areas where gradients differ greatly, an average was calculated from a representative sampling of the various anomalous gradients. The location listed in the table is a center point for all the boreholes averaged in a region; the depth represents the deepest well. If a well is significantly deeper than nearby wells, the gradient for the deepest well was chosen.

The quest for geothermal energy during the 1970's and 1980's promoted extensive temperature surveys across the United States. Measuring temperatures in wells has always been the preliminary exploration tool in searching for both hydro-thermal and hot dry rock geothermal systems. In 1976 the American Association of Petroleum Geologists and the U.S. Geological Survey (USGS) published a geothermal gradient map of North America using predominantly bottom-hole temperatures from oil and gas wells. The gradients were calculated using the average annual surface temperature as one point and a corrected temperature at the greatest depth as the second point.

The new map presents gradients from wells that were logged specifically for temperature; that is, the temperature was measured at regular depth intervals in a well that had attained thermal equilibrium, and the slope was calculated for the least-squares line passing through a plot of the data points. This temperature log provided information that enabled an interpretation of the conductive vs. convective component of heat transfer in the underlying rocks.

Trans-Pacific Geothermal, Inc. LIBRARY

National Geophysical Data Center

CHOOSING, CALCULATING, AND AVERAGING GRADIENTS

The purpose of this map is to present gradients from wells that are in thermal equilibrium and appear to reflect a conductive regime. Only the linearity of the temperature/depth profile is used to determine if the gradient reflects a dominantly conductive regime. Other information concerning the hydrologic nature of the system is not considered. This method presents a consistent approach to evaluating data of highly variable quality, which can also be very inconsistent over small distances due to local changes in hydrology and geology. Where temperature/depth profiles are not available, a quality rating by the original author is considered. It is important to emphasize that gradients shown on this map reflect only the local conditions within a well and cannot be assumed to represent a regional value or to extend below the depth of actual measurement.

The following list specifies criteria used for selecting gradients for the map:

- 1. Wells must be deeper than 50 m.
- Temperature/depth profiles should reflect minimum hydrologic disturbances (i.e., they should approximate a straight line, or consist of straight-line segments that reflect changes in the thermal conductivity of the rocks).
- 3. Gradients must be positive below the temperature inversion due to seasonal effects.
- Only gradients given a high-quality rating by authors are used (generally, a least-squares line with a correlation coefficient of 10%).

Once a gradient met the above criteria, the following methods were used to calculate a representative measurement for the well:

- 1. Gradients were calculated from measurements taken beneath the temperature inversion caused by changes in seasons.
- A least-squares fit was calculated for straight-line segments of a temperature vs. depth plot and a weighted average was determined from these segments.
- 3. In some cases, a straight line was visually drawn to approximate a least-squares fit, and the slope of the line (or straight-line segments) was calculated.
- 4. In Louisiana abundant deep, bottom-hole temperature (BHT) data are available from oil and gas wells. When BHT is plotted against depth for many wells in a region, a least-squares line through the data points approximates the average temperature gradient in that region. The location of such a measurement on the map is the approximate center point of the group of wells considered.

Figure 1. Sample portion of Geothermal Gradient Map. Each well is represented by a symbol which reflects the depth of the deepest temperature measurement, and by a color which represents a gradient interval. The numbers are keyed to a table (see sample at bottom of figure) showing latitude, longitude, well depth, gradient, heat flow, thermal conductivity, and a reference.

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL GEOPHYSICAL DATA CENTER 325 BROADWAY BOULDER, CO 80303

POSTAGE AND FEES PAID U. S. DEPARTMENT OF COMMERCE COM-210

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

> 20972**092/088/ /GC1 * //// H TSVI MEIDAV TRANS-PACIFIC GEUTHERMAL INC SUITE 612 1419 BROADWAY OAKLAND CA 94612

HOW TO ORDER

The cost of the map is \$10 folded or \$12 flat per set (Eastern and Western U.S.). Digital data used in making the map are also available in the same format as the list shown on the map. Output may be obtained on magnetic tape for \$200. Please make check or money order payable to COMMERCE/NOAA/NGDC. Orders may also be charged to an American Express card by including card account number, expiration date, and signature. All inquiries should be directed to:

National Geophysical Data Center NOAA, Code E/GC1 325 Broadway Boulder, CO 80303

> Telephone: (303) 497-6125 FTS 320-6125

Reterences

- 1. Aamodt, L., Los Alamos Nat. Lab., Los Alamos, New Mexico, unpubl. data, 1981.
- 2. Agnew and Sweet, Inc., Subsurface temperature survey, Soda Lake 1-29, Nevada, unpubl. rep. avail. through Earth Sci. Lab./Univ. Utah Res. Inst., 1975.
- 3. Agnew and Sweet, Inc., Subsurface temperature survey, Soda Lake 44-5, Nevada, unpubl. rep. avail. through Earth Sci. Lab./Univ. Utah Res. Inst., 1978.
- 4. Albright, J.N., A new and more accurate method for the direct measurement of earth temperature gradients in deep boreholes, in Proc. Second J.N. Symposium on the Development and Use of Geothermal Resources, San Francisco, Calif., May 20-29, 847-851, 1975.
- 5. AMAX Exploration, Inc., Case studies: Northern Basin and Range (Tuscarora), Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NV/TUS/AMAX-2, 1979.
- 6. AMAX Exploration, Inc., Case studies: Northern Basin and Range (Tuscarora), Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NV/TUS/AMAX-10, 1980. 7. AMAX Exploration, Inc., Case studies: Northern Basin and Range
- (McCoy), Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NV/MC/AMAX-2, 1980.
- 8. Bateman, R.L. and R.B. Scheibach, Evaluation of geothermal activity in the Truckee Meadows, Washoe Co., Nevada, Nev. Bur. Mines Geol. Rep. 25, 38 p., 1975.
- 9. Bebout, D., Louisiana Geol. Surv., Baton Rouge, Louisiana, personal communication, 1981.
- 10. Benfield, A.E., A heat flow value for a well in California, Amer. J. Sci., 245, 1-18, 1947. 11. Biggane, J.H., The low temperature geothermal resource of the Yakima
- region-A preliminary report, State of Wash. Dept. Nat. Resour., Div. Geol. Earth Resour., Open File Rep. 81-7, 30 p., 1981.
- 12. Birch, F., Crustal structure and surface heat flow near the Colorado Front Range, Trans. Amer. Geophys. Union, 28, 792-797, 1947.
- 13. Birch, F., Temperature and heat flow in a well near Colorado Springs, Amer. I. Sci., 245, 733-753, 1947. 14. Birch, F., The effects of Pleistocene climatic variations upon geothermal
- gradients, Amer. J. Sci., 246, 729-760, 1948. 15. Birch, F., Flow of heat in the Front Range, Colorado, Geol. Soc. Amer.
- Bull., 61, 567-630, 1950. 16. Birch, F., Thermal conductivity, climatic variation, and heat flow near Calumet, Michigan, Amer. J. Sci., 252, 1-25, 1954.
- 17. Blackwell, D.D., Terrestrial heat flow determinations in the northwestern United States, Ph.D. thesis, Harvard Univ., Cambridge, Mass., 197 p., 1967.
- 18. Blackwell, D.D., Heat flow determinations in the northwestern United States, J. Geophys. Res., 74, 992-1007, 1969.
- 19. Blackwell, D.D., Heat flow and geothermal gradient measurements in Washington to 1979 and temperature-depth data collected during 1979, Wash. Dept. Nat. Resour. Open File Rep. 80-9, 524 p., 1980.
- 20. Blackwell, D.D., Aspects of low temperature geothermal resource assessment with examples from Kansas and Oregon, in Geothermal Direct Heat Program, Glenwood Springs Tech. Conf. Proc., I, edited by C. Ruscetta and D. Foley, U.S. Dept. Energy Rep. DOE/ID/12079-39 ESL-59, 1-22, 1981.
- 21. Blackwell, D.D. and C. Baag, Heat flow in a "blind" geothermal area near Marysville, Montana, Geophys., 38, 941-956, 1973.
- 22. Blackwell, D.D. and E.C. Robertson, Thermal studies of the Boulder Batholith and vicinity, Montana, Soc. Econ. Geol. Guidebook, Butte Field Mtg., August 18-21, D-1–D-8, 1973.
- 23. Blackwell, D.D. and J.L. Steele, Heat flow modeling of the Mount Hood volcano, Oregon, in Geothermal Resource Assessment of Mount Hood, Oregon, edited by D.A. Hull, Oregon Dept. Geol. Min. Indus. Open File Rep. URLO-1040-T1, 191-264, 1979.
- 24. Blackwell, D.D., G.L. Black and G.R. Priest, Geothermal gradient data (1978), Oregon Dept. Geol. Min. Indus., Open File Rep. 0-81-3A, 63 p.,
- 25. Blackwell, D.D., G.L. Black and G.R. Priest, Geothermal gradient data (1979), Oregon Dept. Geol. Min. Indus., Open File Rep. 0-81-3B, 98 p.,
- 26. Blackwell, D.D., G.L. Black and G.R. Priest, Geothermal gradient data (1980), Oregon Dept. Geol. Min. Indus., Open File Rep. 0-81-3C, 374 p., 1981.

- 27. Bodell, J.M., and D.S. Chapman, Heat flow in the north-central Colorado Plateau, J. Geophys. Res., 87, 2869-2884, 1982. 28. Bowen, R.G., Geothermal gradient data, Oregon Dept. Geol. Min.
- Indus, Open File Rep. 0-75-3, 133 p., 1975. 29. Bowen, R.G., D.D. Blackwell and D.A. Hull, Geothermal studies and exploration in Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep.
- 0-75-7, 66 p., 1975. 30. Bowen, R.G., D.D. Blackwell and D.A. Hull, Geothermal exploration studies in Oregon, Oregon Dept. Geol. Min. Indus. Misc. Paper 19,
- 50 p., 1977. 31. Brott, C.A., Southern Methodist Univ., Dallas, Texas, personal communication, 1980.
- 32. Brott, C.A., D.D. Blackwell and J.C. Mitchell, Heat flow study of the Snake River Plain region, Idaho, in Geothermal Investigations in Idah Idaho Dept. Water Resour., Water Info. Bull., 30 (8), 195 p., 1976. 33. Brott, C.A., D.D. Blackwell and J.C. Mitchell, Tectonic implications of
- the heat flow of the western Snake River Plain, Idaho, Geol. Soc. Amer. Bull., 89, 1697-1707, 1978. 34. Brott, C.A., D.D. Blackwell and J.P. Ziagos, Thermal and tectonic impli-
- cations of heat flow in the eastern Snake River Plain, Idaho, J. Geophys. Res., 86, 11709-11734, 1981. 35. Brown, D.E., Office memorandum G-5/#6/81, Los Alamos Nat. Lab.,
- Los Alamos, New Mexico, 1981. 36. Brown, D.E., G.D. McLean, G.R. Priest, N.M. Woller and G.L. Black, Preliminary geology and geothermal resource potential of the Belknap-
- Foley area, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-2, 58 p., 1980. 37. Brown, D.E., G.D. McLean, G.R. Priest, N.M. Woller and G.L. Black, Preliminary geology and geothermal resource potential of the
- Willamette Pass area, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-3, 65 p., 1980. 38. Brown, D.E., G.L. Black and G.D. McLean, Preliminary geology and geothermal resource potential of the Craig Mountain-Cove area, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-4, 68 p.,
- 39. Brown, D.E., G.D. McLean and G.L. Black, compilers, Preliminary geology and geothermal resource potential of the western Snake River
- Plain, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-5, 114 p., 1980. 40. Brown, D.E., G.D. McLean and G.L. Black, Preliminary geology and geothermal resource potential of the northern Harney Basin, Oregon,
- Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-6, 52 p., 1980. 41. Brown, D.E., G.D. McLean and G.L. Black, Preliminary geology and geothermal resource potential of the southern Harney Basin, Oregon,
- Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-7, 90 p., 1980. 42. Brown, D.E., G.L. Black, G.D. McLean and J.R. Petros, Preliminary geology and geothermal resource potential of the Powell Buttes area, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-8, 117
- n 1980. 43. Brown, D.E., N.V. Peterson and G.D. McLean, Preliminary geology and geothermal resource potential of the Lakeview area, Oregon, Oregon
- Dept. Geol. Min. Indus. Open File Rep. 0-80-9, 108 p., 1980. 44. Brown, D.E. and N.V. Peterson, Preliminary geology and geothermal resource potential of the Alvord Desert area, Oregon, Oregon Dept
- Geol. Min. Indus. Open File Rep. 0-80-10, 57 p., 1980. 45. Carrier, D.L. and D.S. Chapman, Gravity and thermal models for the Twin Peaks silicic volcanic center, southwestern Utah, J. Geophys. Res., 86, 10287-10302, 1981.
- 46. Chapman, D.S., D.D. Blackwell, W.T. Parry, W.R. Sill, S.H. Ward and S.H. Whelan, Regional heat flow and geochemical studies in southwest Utah, Final Rep., v. II, Univ. Utah Geol. Dept. unpubl. rep. submit. to U.S. Geol. Surv., 115 p., 1978.
- 47. Chapman, D.S., M.D. Clement and C.W. Mase, Thermal regime of the Escalante Desert, Utah, with an analysis on the Newcastle Geothermal
- System, J. Geophys. Res., 86, 11735-11746, 1981. 48. Ciancanelli, E.V., Francana Resources, Inc., Denver, Colo., personal communication, 1981.
- 49. Clark, S.P., Jr., Heat flow at Grass Valley, California, Amer. Geophys. Union Trans., 38, 239-244, 1957.
- 50. Combs, J., Terrestrial heat flow in north central United States, Ph.D. thesis, Mass. Inst. Technol., Cambridge, Mass., 317 p., 1970.
- 51. Combs, J., Heat flow in the Coso geothermal area, Inyo County, Califor nia, I. Geophys. Res., 85, 2411-2424, 1980.
- 52. Combs, J. and G. Simmons, Terrestrial heat flow determinations in the north central United States, J. Geophys. Res., 78, 441-461, 1973.

- 53. Costain, J.K., Insulating properties of Coastal Plain sediments (South Carolina and North Carolina), in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ.
- Rep. VPI&SU-5103-2, 95-113, 1976. 54. Costain, J.K., Partial confirmation of radiogenic model, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5103-4, C-23-C-26, 1977.
- 55. Costain, J.K. and P.M. Wright, Heat flow at Spor Mountain, Jordan Valley, Bingham, and La Sal, Utah, J. Geophys. Res., 78, 8687-8698,
- 56. Costain, J.K., L.D. Perry and J.A. Dunbar, Geothermal gradients and in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5103-4, C-2-C-10, 1977.
- 7. Costain, J.K., L.D. Perry and J.A. Dunbar, Geothermai gradients, heat flow, and heat generation, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5648-1, C-28-C-53, 1977.
- 58. Costain, J.K., L.D. Perry, S.S. Dashevsky and B.U. Contrad, Heat flow and heat generation, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Clover III and A.K. Sinha, Virg. Polytech, Inst. State Univ. Rep. VPI&SU-5648-3, C-36-C-57, 1978.
- 59. Costain, J.K., L.D. Perry, S.S. Dashevsky, W.S. McClung and S.P. Higgins, Heat flow and heat generation, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5648-5, C-139-C-144, 1979.
- 60. D'Appolonia Consulting Engineers, Inc., Hot dry rock geothermal evaluation, Cris-Wall site, eastern shore of Maryland and Virginia, Report to Los Alamos Nat. Lab., Contract No. 4-X29-7745G-1, 2, Appendices A, B, C, 1980.
- 61. Dashevksy, S.S., Geothermal gradients in the southeastern United States, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5648-3, C-24-C-35, 1978.
- 62. Dashevsky, S.S. and W.S. McClung, Summary of temperature logging of Crisfield, Maryland geothermal test hole, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-78ET-27001-7, A-22—A-32, 1979.
- 63. Dashevsky, S.S. and W.S. McClung, Temperature logs at other locations in the Atlantic Coastal Plain, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State
- Univ. Rep. VPI&SU-78ET-27001-7, A-83—A-88, 1979. 64. Decker, E.R., Heat flow in Colorado and New Mexico, J. Geophys. Res., 74, 550-559, 1969.
- 65. Decker, E.R., Univ. Maine, Orono, Maine, personal communication, 66. Decker, E.R. and F. Birch, Basic heat-flow data from Colorado, Minne-
- sota, New Mexico and Texas, in Basic Heat-Flow Data from the United States, edited by J.H. Sass and R.J. Munroe, U.S. Geol. Surv. Open File Rep. 74-9, 5-6-5-58, 1974.
- 67. Decker, E.R. and R.F. Roy, Basic heat-flow data from the eastern and western United States, in Basic Heat-Flow Data from the United States, edited by J.H. Sass and R.J. Munroe, U.S. Geol. Surv. Open File Rep. 74-9, 7-1-7-90, 1974.
- 68. Decker, E.R. and S.B. Smithson, Heat flow and gravity interpretion across the Rio Grande rift in southern New Mexico and west Texas, J. Geophys. Res., 80, 2542-2552, 1975.
- 69. Decker, E.R., K.R. Baker, G.J. Bucher and H.P. Heasler, Preliminary heat flow and radioactivity studies in Wyoming, J. Geophys. Res., 85, 311-321, 1980.
- 70. Dellachaie, F., A geological and hydro-geochemical study of the LaGrande area, Union County, Oregon, Geotherm. Resour. Council Trans., 2, 145-148, 1978.
- 71. Diment, W.H., Thermal regime of a large diameter borehole: Instability of the water column and comparison of air- and water-filled conditions, Geophys., 32, 720-726, 1967.

Res., 68, 5035-5047, 1963. 73. Diment, W.H. and R.W. Werre, Terrestrial heat flow near Washington,

74. Diment, W.H., R. Raspet, M.H. Mayhew and R.W. Werre, Terrestrial

heat flow near Alberta, Virginia, J. Geophys. Res., 70, 923-929, 1965.

75. Diment, W.H., I.W. Mariner, J. Niheisel and G.E. Siple, Subsurface

76. Diment, W.H., T.C. Urban and F.A. Revetta, Some geophysical

anomalies in the eastern United States, in the Nature of the Solid Earth,

the Dower Production Co. Novada deep thermal gradient stud

Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NM/BAL/EPP-8,

78. East, J., Hot dry rock geothermal potential of Roosevelt Hot Springs

79. Eckstein, Y., Heat flow anomaly at the northwestern flank of the

80. Edwards, C.L., M. Reiter, C. Shearer and W. Young, Terrestrial heat

eastern Colorado, Geol. Soc. Amer. Bull., 89, 1341-1350, 1978.

81. Emhof, J.W., A geothermal study of southern Virginia, North Carolina

82. Fisher, J., L.R. Ingersoll and H. Vivian, Recent geothermal

83. Fuller, W.R., Heat flow reconnaissance of Florida, M.S. thesis, Univ.

84. Geothermal Power Corp., Shallow thermal gradient data, Roosevelt

85. GeothermEx, Inc., Temperature-gradient and heat flow data, Grass

86. Getty Oil Co., Temperature gradient holes, Colado, Nevada, Earth Sci.

Valley, Nevada, Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep.

Hot Springs area, Utah, Earth Sci. Lab./Univ. Utah Res. Inst. Open File

flow and crustal radioactivity in northeastern New Mexico and south-

and eastern Tennessee, M.S. thesis, Univ. Florida, Gainesville, Florida,

measurements in the Michigan copper district, Amer. Inst. Min. Metall.

Appalachian Basin, EOS Trans. AGU, 62, 1054, 1981.

area: Review of data and recommendations, Los Alamos Nat. Lab. Rep.

edited by E.C. Robertson, McGraw Hill, New York, 544-572, 1972.

temperature, thermal conductivity and heat flow near Aiken, South

D.C., J. Geophys. Res., 69, 2143-2149, 1964.

Carolina, J. Geophys. Res., 70, 5635-5644, 1965.

LA-8751-HDR, 45 p., 1981.

Eng. Tech. Pub., 481, 3-11, 1932.

Florida, Gainesville, Florida, 78 p., 1976.

82 p., 1977.

Rep., Item 1, 1978.

NV/LCH/AMN-4, 1979.

- 72. Diment, W.H. and E.C. Robertson, Temperature, thermal conductivity, and heat flow in a drilled hole near Φ ak Ridge, Tennessee, J. Geophys.
- - 97. Hallock, W., Preliminary report of observations at the deep well, Wheeling, West Virginia, Amer. J. Sci., 43, 234-236, 1892.
 - 98. Henyey, T.L. and G.J. Wasserburg, Heat flow near major strike-slip

100. Hodge, D.S., K. Hilfiker, P. Morgan and C.A. Swanberg, Preliminary

101. Hodge, D.S., R. De Rito, K. Hilfiker, P. Morgan and C.A. Swanberg, In-

103. Hull, D.A., R.G. Bowen, D.D. Blackwell, and N.V. Peterson, Geother-

104. Hull, D.A., R.G. Bowen, D.D. Blackwell, N.V. Peterson and G.L. Black,

105. Hull, D.A., D.D. Blackwell, R.G. Bowen and N.V. Peterson, Heat flow

106. Hull, D.A., D.D. Blackwell and G.L. Black, Geothermal gradient data,

107. Hunter, J., Los Alamos Nat. Lab., Los Alamos, New Mexico, unpubl.

108. Jaupart, C., J.R. Mann and G. Simmons, A detailed study of the distribu-

State, Los Alamos Nat. Lab. Rep. LA-8960-MS, 74 p., 1981.

geothermal investigations in New York State, Geotherm. Resour. Council

vestigations of low-temperature geothermal potential in New York

Hotchkiss, W.O. and L.R. Ingersoll, Postglacial time calculations from

recent geothermal measurements in the Calument copper mines, J.

mal gradient data, Brothers Fault Zone, Oregon, Oregon Dept. Geol.

Geothermal gradient data, Oregon Dept. Geol. Min. Indus. Open File

study of the Brothers Fault Zone, Oregon, Oregon Dept. Geol. Min.

Oregon Dept. Geol. Min. Indus. Open File Rep. 0-78-4, 187 p., 1978.

tion of heat flow and radioactivity in New Hampshire (U.S.A.), Earth

109. Johnson, W.D., Jr., The gold quartz veins of Grass Valley, California,

110, Joyner, W.B., Heat flow in Pennsylvania and West Virginia, Geophys.,

111. Judge, A.S. and A.E. Beck, Analysis of heat-flow data: Several boreholes

in a sedimentary basin, Can. J. Earth Sci., 10, 1494-1507, 1973.

112. Keplinger and Assoc., Inc., Interim evaluation of exploration and

113. Keys. W.S., U.S. Geol. Surv., Denver, Colorado, personal communica-

114. King, W. and G. Simmons, Heat flow near Orlando, Florida and

115. Knopf, A., The Mother Lode system of California, U.S. Geol. Surv. Prof.

Uvalde, Texas determined from well cuttings, Geothermics, 1, 133-139,

development status, geothermal potential and associated economics of

Dixie Valley, Nevada, unpubl. rep. submit. to Millican Oil Co.,

Houston, Texas, avail. through Earth Sci. Lab./Univ. Utah Res. Inst.,

U.S. Geol, Surv. Prof. Paper 1044-E, 36 p., 1979.

Min. Indus. Open File Rep. 0-76-2, 24 p., 1976.

Indus. Open File Rep. 0-77-3, 43 p., 1977

U.S. Geol. Surv. Prof. Paper 194, 101 p., 1940.

Trans., 3, 317-320, 1979.

Geol., 42, 113-122, 1934.

Rep. 0-77-2, 134 p., 1977.

Planet, Sci. Lett., in press.

25, 1229-1241, 1960.

Paper 157, 88 p., 1929.

113 p., 1978.

tion, 1981.

1972

data, 1982.

- faults in California, J. Geophys. Res., 76, 7924-7946, 1971.

- 99. Hobba, W.A., Jr., D.W. Fisher, F.J. Pearson, Jr. and J.C. Chemerys,
- Geol. Soc. Amer. Bull., 66 1590, 1955. 126. Leonard, R.B. and W.A. Wood, Geothermal gradients in the Missoula Hydrology and geochemistry of thermal springs of the Appalachians,
 - and Bitterroot Valleys, west-central Montana, U.S. Geol. Surv. Water Resour. Invest. 80-89, 15 p., 1980.
 - 127. Levitte, D. and D. Gambill, Geothermal potential of west-central New Mexico from geochemical and thermal gradient data, Los Alamos Nat. Lab. Rep. LA-8608-MS, 102 p., 1980.
 - 128. Lohse, A. and C.D. Hopkins, No. 2 geothermal well-of-opportunity,
 - Wayne Co., Georgia, U.S. Dept. Energy Rep. NVO-1528-1, 12 p., 1978. 129. Lohse, R.L., A heat flow study of Dona Ana County, Southern Rio Grande rift, New Mexico, M.S. thesis, New Mexico State Univ., Las Cruces, New Mexico, 72 p., 1980.
 - of sulfide oxidation in the San Manuel District, Arizona, Econ. Geol.,
 - 43, 1-20, 1948. 131. Lovering, T.S. and H.T. Morris, Underground temperatures and heat
 - flow in the East Tintic District, Utah, U.S. Geol. Surv. Prof. Paper 504F,
 - 28 p., 1965. 132. Mase, C.W., S.P. Galanis, Jr. and R.J. Munroe, Near surface heat flow in Saline Valley, California, U.S. Geol. Surv. Open File Rep. 79-1136, 52
 - p., 1979. 133. Mase, C.W., J.H. Sass and A.H. Lachenbruch, Near-surface hydrothermal regime of the Lassen "Known Geothermal Resource Area," California, U.S. Geol. Surv. Open File Rep. 80-1230, 31 p., 1980.
 - 134. Mase, C.W. and J.H. Sass, Heat flow from the western arm of the Black Rock Desert, Nevada, U.S. Geol. Surv. Open File Rep. 80-1238, 38 p.,
 - 135. Mase, C.W., J.H. Sass, C.A. Brook and R.J. Munroe, Shallow hydrothermal regime of the East Brawley and Glamis KGRA's, Salton Trough, California, U.S. Geol. Surv. Open File Rep. 81-834, 57 p., 1981. 136. Mase, C.W., J.H. Sass, A.H. Lachenbruch and R.J. Munroe, Preliminary
 - heat-flow investigations of the California Cascades, U.S. Geol. Surv. Open File Rep. 82-150, 240 p., 1982. 137. Mathews, M., R.H. Pettitt and D.J. Miles, High temperature logging for
 - basic development of HDR reservoirs, Geotherm. Resour. Council Trans., 5, 299-302, 1981. 138. Maurath, G. and Y. Eckstein, Heat flow and heat production in north-
 - western Pennsylvania, Geotherm. Resour. Council Trans., 5, 103-106,
 - 139. McClung, W.S., Temperature logs of observation wells in the coastal plains of Georgia, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover III and A.K. Sinha, Virg, Polytech, Inst. State Univ. Rep.
 - VPI&SU-78-ET-2701-8, B-22-B-30, 1980. 140. McClung, W.S., Virg. Polytech. Inst. State Univ., Blacksburg, Virginia, personal communication, 1981.
 - 141. Meyer, H.J., Northwest Geothermal Corp., Portland, Oregon, personal communication, 1981.
 - 142. Miser, H.D., Temperature of Oklahoma's deepest hole, Amer. Assoc. Petrol. Geol. Bull., 8, 525-526, 1924.
 - 143. Morris, H.T., U.S. Geol. Surv., Menlo Park, California, unpublished data, 1981. 144. Muffler, L.J.P. and D.L. Wiliams, Geothermal investigations of the U.S.
 - Geological Survey in Long Valley, California 1972-73, J. Geophys. Res., 8, 721-724, 1976. 145. Munroe, R.J. and J.H. Sass, Basic heat-flow data from western United States, in Basic Heat-Flow Data from the United States, edited by J. H.
 - Sass and R.J. Munroe, U.S. Geol. Surv. Open File Rep. 74-9, 3-1-3-185, 1974.
 - 46. Noble, J.A., Evidence for a steepening of geothermal gradients in some deep mines and drill holes, Amer. J. Sci., 246, 426-440, 1948. 147. Olmsted, F.H., P.A. Glancy, J.R. Harrill, F.E. Rush and A.S. Van Denburgh, Preliminary hydrogeologic appraisal of selected hydrothermal systems in northern and central Nevada, U.S. Geol. Surv. Open File
 - Rep. 75-56, 267 p., 1975. 148. Perry, L.D., Heat flow in the Atlantic Coastal Plain, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5648-5, C-28-C-53, 1979. 149. Perry, L.D., J.K. Costain and P.A. Geiser, Heat flow in western Virginia
 - and a model for the origin of thermal springs in the folded Ap-
 - palachians, J. Geophys. Res., 84, 6875-6883, 1979.
- 116. Koenig, J.B., R.W. Greensfelder and C.W. Klein, Geothermal potential of the Quest Leasehold, Dixie Valley, Nevada, GeothermEx Inc., unpubl. rep. submit. to Dow Chemical Co., avail. through Earth Sci. Lab./Univ. Utah Res. Inst., 1976.
- 117. Korosec, M.A. and J.E. Schuster, The 1979-1980 geothermal resource assessment program in Washington, Wash. State Dept. Nat. Res. Open
- File Rep. 81-3, 270 p., 1980. 118. Lachenbruch, A.H., Preliminary geothermal model of the Sierra
- Nevada, J. Geophys. Res., 73, 6977-6988, 1968. 119. Lachenbruch, A.H., J.H. Sass, R.J. Munroe and T.H. Moses, Jr., Geothermal setting and simple heat conduction methods for the Long
- Valley Caldera, J. Geophys. Res., 81, 769-784, 1976. 120. Lachenbruch, A.H. and J.H. Sass, Heat flow and energetics of the San
- Andreas fault zone, J. Geophys. Res., 85, 6185-6223, 1980. 121. Lambiase, J., Virg. Polytech. Inst. State Univ., Blacksburg, Virginia, per-
- sonal communication, 1981.

- 122. Laney, R., Los Alamos Nat. Lab., Los Alamos, New Mexico, unpubl.

- data, 1980.
- 123. Lang, W.B., Geologic significance of a geothermal gradient curve,
- Amer. Assoc. Petrol. Geol. Bull., 21, 1193-1205, 1937. 124. Leney, G.W., Preliminary investigations of rock conductivities and terrestrial heat flow in southeastern Michigan, M.A. thesis, Univ. Michigan, Ann Arbor, Michigan, 37 p., 1955.

- Lab./Univ. Utah Res. Inst. Open File Rep., 1979. 87. Getty Oil Co., Beowawe gradient hole program, Eureka Co., Nevada, Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NV/BEO/GOC-3, 88. Glenn, W.E., D.S. Chapman, D. Foley, R.M. Capuano, D. Cole, B. Sibbett and S.H. Ward, Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah, Final Rep., submit. to U.S.
 - Dept. Energy, Div. Geotherm. Energy, Contract No. DOE-AC0778ET28392, 73 p., 1980. 89. Glenn, W.E., J.B. Hulen and D.L. Nielson, A comprehensive study of
 - LASL Well C/T-2 Roosevelt Hot Springs KGRA, Utah, and applications to geothermal well logging, Los Alamos Nat. Lab. Rep. LA-8686-MS, 175 p., 1981.
 - 90. Gosnold, W.D., Jr., Geothermal investigations in Nebraska: Methods and results, in Geothermal Direct Heat Program, Glenwood Springs Tech. Conf. Proc., I, edited by C. Ruscetta and D. Foley, U.S. Dept. Energy Rep. DOE/IT/12079-39 ESL-59, 187-204, 1981.
 - 91. Gosnold, W.D., Jr., Univ. Nebraska, Omaha, Nebraska, personal com-
 - munication, 1981. 92. Goyal, K.P. and D.R. Kassoy, A plausible one-dimensional vertical model of the East Mesa geothermal field, California, J. Geophys. Res.,
 - 86, 10719-10733, 1981, 93. Gregory, A.R. and M.M. Backus, Geopressured formation parameters geothermal well, Brazoria County, Texas, in Fourth U.S. Gulf Coast Geopressured-Geothermal Energy Conference: Research and Develop-
 - ment, I, edited by M.H. Dorfman and W.L. Fisher, 235-311, 1980. 94. Gregory, R.G., A geothermal study of Alabama, Georgia, and South
 - Carolina, M.S. thesis, Univ. Florida, Gainesville, Florida, 108 p., 1978. 95. Griffen, G.M., D.A. Reel and R.W. Pratt, Heat flow in Florida oil test holes and indications of oceanic crust beneath the southern Florida-Bahamas platform, in The Geothermal Nature of the Floridan Plateau,
 - Florida Bur. Geol. Spec. Publ., 21, 43-63, 1977. 96. Guffanti, M. and M. Nathenson, Temperature-depth data for selected deep drill holes in the United States obtained using maximum thermometers, U.S. Geol. Surv. Open File Rep. 81-555, 100 p., 1981.

- 125. Leney, G.W. and J.T. Wilson, Preliminary investigations of rock conductivity and terrestrial heat flow in southeastern Michigan (abstr.),
- 150. Perry, L.D., S.P. Higgins and M.M. McKinney, Heat flow and heat generation in the Atlantic Coastal Plain, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain and L. Glover, III, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-78ET-27001-8, B-114-B-153, 1980.
- 151. Perry, L.D., S.P. Higgins and M.M. McKinney, Heat flow and heat generation in the Piedmont, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain and L. Glover, III, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-78ET-27001-8, B-154-B-179, 1980.
- 152. Perry, L.D., W.S. McClung, J.K. Costain, S.P. Higgins and M.M. McKinney, Heat flow-heat generation, in Distribution and Analysis of 300 m.y. Old Granites as a Potential Geothermal Resource, edited by J.K. Costain and L. Glover, III. Virg. Polytech. Inst. State Univ. Rep. LASL-2,
- 153. Rahman, J.L. and R.F. Roy, Preliminary heat flow measurement at the Illinois deep drill hole, EOS Trans. AGU, 62, 388, 1981. 154. Reiter, M.A. and J.K. Costain, Heat flow in southwestern Virginia, J.
- Geophys. Res., 78, 1323-1333, 1973. 155. Reiter, M., C.L. Edwards, H. Hartman and C. Weidman, Terrestrial heat
- flow along the Rio Grande rift, New Mexico and southern Colorado, Geol, Soc. Amer. Bull., 86, 811-818, 1975. 156. Reiter, M., G. Simmons, M. Chessman, T. England, H. Hartman and C.
- Weidman, Terrestrial heat flow near Datil, New Mexico, New Mex. Bur. Mines Min. Resour. Ann. Rep., 33-37, 1976. 157. Reiter, M., C. Weidman, C.L. Edwards and H. Hartman, Subsurface
- temperature data in Jemez Mountains, New Mexico, New Mex. Bur. Mines Min. Resour. Circ. 151, 16 p., 1976. 158. Reiter, M. and R. Smith, Subsurface temperature data in the Socorro
- Peak KGRA, New Mexico, Geotherm. Energy Mag., 5, 37-41, 1977. 159. Reiter, M., C. Shearer and C.L. Edwards, Geothermal anomalies along the Rio Grande rift in New Mexico, Geology, 6, 85-88, 1978.
- 160. Reiter, M., A.J. Mansure and C. Shearer, Geothermal characteristics of the Colorado Plateau, Tectonophysics, 61, 183-195, 1979.
- 161. Reiter, M., A.J. Mansure and C. Shearer, Geothermal characteristics of the Rio Grande rift within the southern Rocky Mountain Complex, in Rio Grande Rift: Tectonics and Magmatism, edited by R. Riecker, Amer. Geophys. Union, Washington, D.C., 253-267, 1979.
- 162. Reiter, M. and C. Shearer, Terrestrial heat flow in eastern Arizona: A first report, J. Geophys. Res., 84, 6115-6120, 1979. 163. Repplier, F.N., Colo. Geol. Surv., Denver, Colorado, personal com-
- munication, 1981. 164. Ringrose, C.D., Temperature depth profiles in the San Luis Valley and
- Canon City areas, Colorado, Colo. Geol. Surv. Open File Rep. 80-12, 18 p., 1980. 165. Robison, J.H., Data from geothermal wells near Oasis, Lower Coachella
- Valley, California, U.S. Geol. Surv. Open File Rep. 81-411, 26 p., 1981. 166. Rohrer, C.S. and J.K. Costain, Geothermal gradients and heat generation, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III,
- and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5103-3, C-1-C-21, 1977. 167. Roy, R.F., Heat flow measurements in the United States, Ph.D. thesis, Harvard Univ., Cambridge, Mass., 102 p., 1963.
- 168. Roy, R.F., E.R. Decker, D.D. Blackwell and F. Birch, Heat flow in the United States, J. Geophys. Res., 73, 5207-5221, 1968.
- 169. Roy, R.F., B. Taylor, A.J. Pyron and J.C. Maxwell, Heat flow measurements in the state of Arkansas, Los Alamos Nat. Lab. Rep. LA-8569-MS, 15 p., 1980.
- 170. Sanford, R.M., R.L. Bowers and J. Combs, Rio Grande rift geothermal exploration case history: Elephant Butte prospect, south central New Mexico, Geotherm. Resour. Council Trans., 3, 609-612, 1979. 171. Sass, J.H., R.J. Munroe and A.H. Lachenbruch, Measurement of
- geothermal flux through poorly consolidated sediments, Earth Planet. Sci Lett. 4. 293-298, 1968. 172. Sass, J.H., A.H. Lachenbruch, R.J. Munroe, G.W. Greene and H.
- Moses, Jr., Heat flow in the western United States, J. Geophys. Res., 76, 6376-6413, 1971. 173. Sass, J.H. and E.A. Sammel, Heat flow near Klamath Falls, Oregon, J.
- Geophys. Res., 81, 4863-4868, 1976. 174. Sass, J.H., F.H. Olmsted, M.L. Sorey, H.A. Wollenberg, A.H. Lachen-
- bruch, R.J. Munroe and S.P. Galanis, Jr., Geothermal data from test wells in Grass Valley and Buffalo Valley, Nevada, U.S. Geol. Surv. Open File Rep. 76-85, 43 p., 1976.

- 175. Sass, J.H., S.P. Galanis, Jr., R.J. Monroe and T.C. Urban, Heat flow data from southeastern Oregon, U.S. Geol. Surv. Open File Rep. 76-217, 52 p., 1976.
- 176. Sass, J.H., H.A. Wollenberg, D.E. di Somma and J.P. Ziagos, Heat flow near Kyle Hot Springs, Buena Vista Valley, Nevada, U.S. Geol. Surv. Open File Rep., 76-862, 16 p., 1976.
- 177. Sass, J.H., J.P. Ziagos, H.A. Wollenberg, R.J. Munroe, D.E. di Somma and A.H. Lachenbruch, Application of heat flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada,
- U.S. Geol. Surv. Open File Rep. 77-762, 125 p., 1977. 178. Sass, J.H., S.P. Galanis, Jr., B.V. Marshall, A.H. Lachenbruch, R.J.
- Munroe and T.H. Moses, Jr., Conductive heat flow in the Randsburg area, California, U.S. Geol. Surv. Open File Rep. 78-756, 45 p., 1978. 179. Sass, J.H., M.L. Zoback and S.P. Galanis, Jr., Heat flow in relation to
- ermal activity in the Southern Black Rock Desert, Nevada, U Geol. Surv. Open File Rep. 79-1467, 39 p., 1979. 180. Sass, J.H., R.J. Munroe and C. Stone, Heat flow from five uranium test
- wells in west-central Arizona, U.S. Geol. Surv. Open File Rep. 81-1089, 42 p., 1981. 181. Scattolini, R., Heat flow and heat production studies in North Dakota,
- Ph.D. thesis, Univ. North Dakota, Grand Forks, North Dakota, 264 p., 1978
- 182. Schlorholtz, M.W., Terrestrial heat flow in southeastern Ohio, M.S. thesis, Kent State Univ., Kent, Ohio, 77 p., 1979.
- 183. Schlorholtz, M. and Y. Eckstein, Terrestrial heat flow in Washington County, southeast Ohio, Geol. Soc. Amer. Abstr. Prog., 11, 255, 1979. 184. Schuster, J.E. and M.A. Korosec, Preliminary report on heat-flow drill-
- ing in Washington during 1981, Wash. State Dept. Nat. Resour. Open File Rep. 81-8, 36 p., 1981.
- 185. Shearer, C.R. and M. Reiter, Basic heat flow data in New Mexico, New Mex, Bur, Mines Min. Resour. Open File Rep. 93, 1978.
- 186. Shearer, C.R. and M. Reiter, Terrestrial heat flow in Arizona, J. Geophys. Res., 86, 6249-6260, 1981.
- 187. Simmons, G., J. Mann and C. Jaupart, Mass. Inst. Technol., Cambridge, Mass., personal communication, 1982. 188. Smith, D.L., Heat flow at Ducktown, Tennessee, Southeastern
- Geology, 18, 99-106, 1976. 189. Smith, D.L. and W.R. Fuller, Terrestrial heat flow values in Florida and the thermal effects of the aquifer system, in The Geothermal Nature of
- the Floridan Plateau, Florida Bur. Geol. Spec. Publ., 21, 91-130, 1977. 190. Smith, D.L., R.G. Gregory and M.J. Garvey, A thermal reconnaissance of Georgia: Heat flow and radioactive heat generation, in Short Contri-
- butions to the Geology of Georgia, Georgia Geol. Surv. Bull., 93, 93-104, 1978.
- 191. Smith, D.L., W.T. Dees and D.W. Harrelson, Geothermal conditions and their implications for basement tectonics in the Gulf Coast margin, Trans. Gulf Coast Assoc. Geol. Soc., 31st Ann. Mtg., Corpus Christi, Texas, Oct. 21-23, 181-190, 1981.
- 192. Smith, D.L., R.G. Gregory and J.W. Emhof, Geothermal measurements in the southern Appalachian Mountains and southeastern Coastal Plain, Amer. J. Sci., 281, 282-298, 1981.
- 193. Smith, R.N., Heat flow of the western Snake River Plain, Geotherm. Resour. Council Trans., 4, 89-92, 1980.
- 194. Sorey, M.L., Measurement of vertical groundwater velocity from temperature profiles in wells, Water Resour. Res., 7, 963-970, 1971. 195. Southland Royalty Co., Six shallow gradient holes, Dixie Valley, Nevada, unpubl. rep. avail. through Earth Sci. Lab./Univ. Utah Res.
- Inst., 1979. 196. Spicer, H.C., Geothermal gradients and heat flow in the Salt Valley anticline, Utah, Boll. Geofis. Appl., 6, 263-282, 1964.
- 197. Spicer, H.C., A compilation of deep Earth temperature data: US/ 1910-1945, U.S. Geol. Surv. Open File Rep. 64-147, 1964. 198. Spurr, J.E., Geology of the Tonopah mining district, U.S. Geol. Surv.
- Prof. Paper 42, 295, p., 1905. 199. Staub, W.P. and N.L. Treat, A geothermal resource appraisal of the Tennessee Valley Region, Inst. Energy Analysis, Oak Ridge Assoc. Univ.,
- Oak Ridge, Tennessee, 132 p., 198 200. Steele, J.L., A heat flow study in the Turtle Lake Quadrangle, Washington, M.S. thesis, Southern Methodist Univ., Dallas, Texas, 60
- p., 1975. 201. Steeples, D.W., Geothermal evaluation of Kansas-preliminary results, in Geothermal Direct Heat Program, Glenwood Springs Tech. Conf. Proc., I, edited by C. Ruscetta and D. Foley, U.S. Dept. Energy Rep. DOE/ID12079-39 ESL-59, 148-164, 1981.

- 62, 473-475, 1981. 203. Stone, C., Preliminary assessment of the geothermal potential of the northern Hassayampa Plain, Maricopa County, Arizona, in Geothermal
- Studies in Arizona with Two Area Assessments, Progress Report Jan. 16, 1979—Nov. 1, 1979, edited by W.R. Hahman, Ariz. Bur. Geol. Min. Technol. Rep. DOE TID/12009, 1-67, 1979.
- ject, Final Report, Geology, Geochemistry, Geophysics, Chapt. 2, Ariz. Bur. Geol. Min. Technol., unpubl. rep. submit. to U.S. Dept. Energy, 38-54, 1980.
- in the Upper Mississippi Embayment, unpubl. rep. submit. to U.S. Geol. Surv., 1978.
- 206. Trexler, D.T., B.A. Koenig, J. Flynn and J.L. Bruce, Assessment of geothermal resources of Carson-Eagle Valleys and Big Smokey Valley, Nevada, Nev. Bur. Mines Geol. Open File Rep. DOE/NV/10039-2, 251
- n. 1980. 207. Trexler, D.T., B.A. Koenig, T. Flynn, J.L. Bruce and G. Ghusn, Jr., Lowto-moderate temperature geothermal resource assessment for Nevada, area specific studies, Nev. Bur. Mines Geol. Open File Rep.
- DOE/NV/10039-3, 223 p., 1981. 208. Union Oil Co., Cove Fort-Sulphurdale area, Beaver and Millard Counties, Utah, temperature gradient investigation (25 holes), Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep., Item 4, 1976.
- 209. Urban, T.C., Terrestrial heat flow in the middle Atlantic states, Ph.D. thesis, Univ. Rochester, Rochester, New York, 398 p., 1971. 210. Urban, T.C., W.H. Diment and A.L. Baldwin, Basic heat-flow data from
- edited by J.H. Sass and R.J. Munroe, U.S. Geol. Surv. Open File Rep. 74-9, 6-1-6-66, 1974.
- Snake River Plain, Geol. Soc. Amer. Abstr. Prog., 7, 648, 1975.
- the Development and Use of Geothermal Resources, San Francisco, May 20-29, 1241-1245, 1975.
- 213. Urban, T.C., W.H. Diment and M. Nathenson, East Mesa geothermal anomaly, Imperial County, California: Significance of temperatures in a deep drill hole near thermal equilibrium, Geotherm, Resour, Council Trans., 2, 667-670, 1978.
- 214. Van Orstrand, C.E., Some evidence on the variation of temperature with geologic structure in California and Wyoming oil districts, Econ. Geol., 21, 145-165, 1926.
- 215. Van Orstrand, C.E., On the correlation of isogeothermal surfaces with the rock strata, Physics, 2, 139-153, 1932.
- 216. Van Orstrand, C.E., Temperature gradients, in Problems of Petroleum Geology, edited by W.E. Wrather and F.H. Lahee, Amer. Assoc. Petrol. Geol., 989-1021, 1934.
- 217. Van Orstrand, C.E., On the estimation of temperatures at moderate depths in the crust of the earth, Trans. Amer. Geophys. Union, 18, 21-33, 1937
- restrial heat flow and transient magnetic fluctuations in the southwestern United States, Geophys., 34, 463-478, 1969. 219. White, D.E., Conductive heat flow in research drill holes in thermal
- 6, 765-774, 1978. 220. Woodruff, K.D., Preliminary targeting of geothermal resources in
- Energy, Div. Geotherm. Energy Rep. COO-4715-1, 31 p., 1979. 221. Youngs, L.G., Calif. Div. Mines Geol., Sacramento, California, personal
- communication, 1981. 222. Youngs, L.G., C.F. Baron, R.H. Chapman, G.W. Chase, C.T. Higgins, H.H. Majmundar and G.C. Taylor, Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County,
- to U.S. Dept. Energy, Div. Geotherm. Energy, 1980. 223. Zabel, D.A., Determination of terrestrial heat flow in southeastern North Dakota, M.S. thesis, Univ. North Dakota, Grand Forks, North
- Dakota, 36 p., 1975. 224. Ziagos, J.P., J.H. Sass and R.J. Munroe, Heat flow near Charleston, South Carolina, U.S. Geol. Surv. Open File Rep. 76-148, 21 p., 1976.

☆U.S. GOVERNMENT PRINTING OFFICE 1982 - 676-945

California, Calif. Dept. Conserv. Div. Mines Geol., unpubl. rep. submit.

Delaware: Progress Report, July 15, 1978–July 14, 1979, U.S. Dept.

areas of Yellowstone National Park, Wyoming, J. Res. U.S. Geol. Surv.,

218. Warren, R.E., J.G. Sclater, V. Vacquier and R. Roy, Comparison of ter-

211. Urban, T.C. and W.H. Diment, Heat flow of the south flank of the 212. Urban, T.C., W.H. Diment, J.H. Sass and I.M. Jamieson, Heat flow at the Geysers, California, USA, in Proc. Second United Nations Symp. on

eastern United States, in Basic Heat-Flow Data from the United States,

205. Swanberg, C.A., S.J. Mitchell, R.L. Lohse and D.D. Blackwell, Heat flow

204. Stone, C., Results of heat flow drilling, in Springerville Geothermal Pro-

202. Steeples, D.W. and M.E. Bickford, Piggyback drilling in Kansas: An example for the Continental Scientific Drilling Program, EOS Trans. AGU,

	712 have been sold and sold an	Total The color of each data point represents a geothermal gradient for a dr hole or a group of drill holes; the shape of the symbol represents th depth of the drill hole(s). The number in gray under each symbol in the boxes above indicate the aggregate count of the points shown on the maps within a specific depth and gradient range.	rill he 34 ricks rick res fic 71 ° 70 °
	Vell Number: Keyed to State: State postal abbre Latitude (degrees, minu Longitude (degrees, minu Depth (m): Logged dept Gradient (1°C km ⁻¹ = segments (calculated to of drill hole.	DATA TABLE EXPLANATION OF TABLE be symbol on map. eviation. test in the symbol on map. test in the symbol on map. eviation. test in the symbol on map. test in the symbol on the symbol o	$^{-6}$ cal cm ⁻² sec ⁻¹ = 41.8 mWm ⁻²): Number shown e literature. Where available, corrected heat flow re drill holes are averaged, the average heat flow is 1 TCU = mcal cm ⁻¹ sec ⁻¹ $^{\circ}$ C ⁻¹ = 0.418 Wm ⁻¹ h is that reported in the literature. Where drill holes ductivity value is shown. Keyed to reference list printed on the back of each 'W'' (e.g., 3W) represents number of wells averaged nt. Number before "BHT" (e.g. 10BHT) represents when calculating a least-squares line through a plot 'Methods Used to Calculate a Gradient'').
		Non-operating and a second probability of a p	
 b. d. d. de de	Sr/r MA 42 37. 72 27. 280 22.7 1.67 6.67 67 168 578 MA 42 23. 71 07. 260 13.5 1.20 9.01 67 168 579 MA 41 53. 71 08. 290 13.3 1.22 9.2 108 580 MA 41 43. 71 12. 305 14.7 1.45 9.9 108 581 MA 41 43. 71 12. 305 14.7 1.45 9.9 108 MARYLAND 582 MD 39 19.25 76 46.27 288 15.56 1.19 7.65 151 583 MD 38 26.04 75 03.57 376 27. 1.45 148 584 MD 38 23.43 75 31.40 318 36. 148 585 MD 38 18.75 07.07 303 36. 1.54	837 NH 42 52.80 72 28.30 155 18.9 1.94 10.29 187 838 NH 42 51. 71 37. 240 17.4 1.05 108 2W 839 NH 42 51. 71 22. 80 26.4 1.45 5.5 108 840 NH 42 50. 71 43. 130 20.9 1.17 5.6 108 841 NH 42 49.20 71 66.00 364 22.5 1.85 8.19 187 842 NH 42 47. 72 08. 300 21.41 1.63 7.69 67 168 843 NH 42 45. 71 51. 125 15.7 1.18 7.5 108 2W B46 NI 40 21.37 41.87 205 15.61 61 61 846 NI 40 18.81 74 03.02 307 26. 61 61 <t< th=""><th>1562 VT 42 53.30 73 13.20 210 7.5 187 WEST VIRGINIA 1645 WV 40 0.2 80 41.9 1360 25.72 96 97 197 216 1646 WV 39 40. 79 59. 342 9.0 1.12 12.4 71 76 209 210 1647 WV 39 30.39 80 19.08 983 20.54 197 216 1648 WV 39 26.04 80 22.15 610 18.51 197 216 1654 WV 39 25.4 80 02.8 2246 28.57 96 197 216 1651 WV 39 20.2 80 12.7 2134 28.75 96 197 216 1652 WV 39 16.5 80 45.7 1981 25.95 1.22 96 110 197 1654 WV 39 16.08 81 16</th></t<>	1562 VT 42 53.30 73 13.20 210 7.5 187 WEST VIRGINIA 1645 WV 40 0.2 80 41.9 1360 25.72 96 97 197 216 1646 WV 39 40. 79 59. 342 9.0 1.12 12.4 71 76 209 210 1647 WV 39 30.39 80 19.08 983 20.54 197 216 1648 WV 39 26.04 80 22.15 610 18.51 197 216 1654 WV 39 25.4 80 02.8 2246 28.57 96 197 216 1651 WV 39 20.2 80 12.7 2134 28.75 96 197 216 1652 WV 39 16.5 80 45.7 1981 25.95 1.22 96 110 197 1654 WV 39 16.08 81 16

Reterences

- 1. Aamodt, L., Los Alamos Nat. Lab., Los Alamos, New Mexico, unpubl. data, 1981.
- 2. Agnew and Sweet, Inc., Subsurface temperature survey, Soda Lake 1-29, Nevada, unpubl. rep. avail. through Earth Sci. Lab./Univ. Utah Res. Inst., 1975.
- 3. Agnew and Sweet, Inc., Subsurface temperature survey, Soda Lake 44-5, Nevada, unpubl. rep. avail. through Earth Sci. Lab./Univ. Utah
- Res. Inst., 1978. 4. Albright, I.N., A new and more accurate method for the direct measurement of earth temperature gradients in deep boreholes, in Proc. Second N. Symposium on the Development and Use of Geotherma Resources, San Francisco, Calif., May 20-29, 847-851, 1975.
- 5. AMAX Exploration, Inc., Case studies: Northern Basin and Range (Tuscarora), Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NV/TUS/AMAX-2, 1979.
- 6. AMAX Exploration, Inc., Case' studies: Northern Basin and Range (Tuscarora), Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NV/TUS/AMAX-10, 1980.
- 7. AMAX Exploration, Inc., Case studies: Northern Basin and Range (McCoy), Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep.
- NV/MC/AMAX-2, 1980. 8. Bateman, R.L. and R.B. Scheibach, Evaluation of geothermal activity in the Truckee Meadows, Washoe Co., Nevada, Nev. Bur. Mines Geol.
- Rep. 25, 38 p., 1975. 9. Bebout, D., Louisiana Geol. Surv., Baton Rouge, Louisiana, personal
- communication, 1981. 10. Benfield, A.E., A heat flow value for a well in California, Amer. J. Sci., 245, 1-18, 1947.
- 11. Biggane, J.H., The low temperature geothermal resource of the Yakima region—A preliminary report, State of Wash. Dept. Nat. Resour., Div. Geol. Earth Resour., Open File Rep. 81-7, 30 p., 1981.
- 12. Birch, F., Crustal structure and surface heat flow near the Colorado Front Range, Trans. Amer. Geophys. Union, 28, 792-797, 1947.
- 13. Birch, F., Temperature and heat flow in a well near Colorado Springs, Amer I. Sci., 245, 733-753, 1947, Birch, F., The effects of Pleistocene climatic variations upon geothermal
- gradients, Amer. J. Sci., 246, 729-760, 1948. 15. Birch, F., Flow of heat in the Front Range, Colorado, Geol. Soc. Amer.
- Bull., 61, 567-630, 1950, 16. Birch, F., Thermal conductivity, climatic variation, and heat flow near
- Calumet, Michigan, Amer. J. Sci., 252, 1-25, 1954. 17. Blackwell, D.D., Terrestrial heat flow determinations in the northwestern United States, Ph.D. thesis, Harvard Univ., Cambridge, Mass., 197 p., 1967.
- 18. Blackwell, D.D., Heat flow determinations in the northwestern United States, J. Geophys. Res., 74, 992-1007, 1969.
- 19. Blackwell, D.D., Heat flow and geothermal gradient measurements in Washington to 1979 and temperature-depth data collected during 1979, Wash. Dept. Nat. Resour. Open File Rep. 80-9, 524 p., 1980.
- 20. Blackwell, D.D., Aspects of low temperature geothermal resource assessment with examples from Kansas and Oregon, in Geothermal Direct Heat Program, Glenwood Springs Tech. Conf. Proc., I, edited by C. Ruscetta and D. Foley, U.S. Dept. Energy Rep. DOE/ID/12079-39 ESL-59, 1-22, 1981.
- 21. Blackwell, D.D. and C. Baag, Heat flow in a "blind" geothermal area near Marysville, Montana, Geophys., 38, 941-956, 1973.
- 22. Blackwell, D.D. and E.C. Robertson, Thermal studies of the Boulder Batholith and vicinity, Montana, Soc. Econ. Geol. Guidebook, Butte Field Mtg., August 18-21, D-1–D-8, 1973.
- 23. Blackwell, D.D. and J.L. Steele, Heat flow modeling of the Mount Hood volcano, Oregon, in Geothermal Resource Assessment of Mount Hood, Oregon, edited by D.A. Hull, Oregon Dept. Geol. Min. Indus. Open File Rep. URLO-1040-T1, 191-264, 1979.
- 24. Blackwell, D.D., G.L. Black and G.R. Priest, Geothermal gradient data (1978), Oregon Dept. Geol. Min. Indus., Open File Rep. 0-81-3A, 63 p.,
- 25. Blackwell, D.D., G.L. Black and G.R. Priest, Geothermal gradient data (1979), Oregon Dept. Geol. Min. Indus., Open File Rep. 0-81-3B, 98 p.,
- 26. Blackwell, D.D., G.L. Black and G.R. Priest, Geothermal gradient data (1980), Oregon Dept. Geol. Min. Indus., Open File Rep. 0-81-3C, 374 p., 1981.

- 27. Bodell, J.M., and D.S. Chapman, Heat flow in the north-central Colorado Plateau, J. Geophys. Res., 87, 2869-2884, 1982.
- 28. Bowen, R.G., Geothermal gradient data, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-75-3, 133 p., 1975.
- 29. Bowen, R.G., D.D. Blackwell and D.A. Hull, Geothermal studies and exploration in Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep.
- 0-75-7, 66 p., 1975. 30. Bowen, R.G., D.D. Blackwell and D.A. Hull, Geothermal exploration studies in Oregon, Oregon Dept. Geol. Min. Indus. Misc. Paper 19, 50 p., 1977.
- 31. Brott, C.A., Southern Methodist Univ., Dallas, Texas, personal communication, 1980.
- 2. Brott, C.A., D.D. Blackwell and J.C. Mitchell, Heat flow study of the Snake River Plain region, Idaho, in Geothermal Investigations in Idah Idaho Dept. Water Resour., Water Info. Bull., 30 (8), 195 p., 1976. 33. Brott, C.A., D.D. Blackwell and J.C. Mitchell, Tectonic implications of
- the heat flow of the western Snake River Plain, Idaho, Geol. Soc. Amer. Bull., 89, 1697-1707, 1978. 34. Brott, C.A., D.D. Blackwell and J.P. Ziagos, Thermal and tectonic impli-
- cations of heat flow in the eastern Snake River Plain, Idaho, J. Geophys. Res., 86, 11709-11734, 1981. 35. Brown, D.E., Office memorandum G-5/#6/81, Los Alamos Nat. Lab.,
- Los Alamos, New Mexico, 1981. 36. Brown, D.E., G.D. McLean, G.R. Priest, N.M. Woller and G.L. Black, Preliminary geology and geothermal resource potential of the Belknap-Foley area, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep.
- 0-80-2, 58 p., 1980. 37. Brown, D.E., G.D. McLean, G.R. Priest, N.M. Woller and G.L. Black, Preliminary geology and geothermal resource potential of the Willamette Pass area, Oregon, Oregon Dept. Geol. Min. Indus. Open
- File Rep. 0-80-3, 65 p., 1980. 38. Brown, D.E., G.L. Black and G.D. McLean, Preliminary geology and geothermal resource potential of the Craig Mountain-Cove area, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-4, 68 p.,
- 39. Brown, D.E., G.D. McLean and G.L. Black, compilers, Preliminary geology and geothermal resource potential of the western Snake River Plain, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-5, 114 p., 1980.
- 40. Brown, D.E., G.D. McLean and G.L. Black, Preliminary geology and geothermal resource potential of the northern Harney Basin, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-6, 52 p., 1980.
- 41. Brown, D.E., G.D. McLean and G.L. Black, Preliminary geology and geothermal resource potential of the southern Harney Basin, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-7, 90 p., 1980. 42. Brown, D.E., G.L. Black, G.D. McLean and J.R. Petros, Preliminary geology and geothermal resource potential of the Powell Buttes area,
- Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-8, 117 43. Brown, D.E., N.V. Peterson and G.D. McLean, Preliminary geology and
- geothermal resource potential of the Lakeview area, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-80-9, 108 p., 1980. 44. Brown, D.E. and N.V. Peterson, Preliminary geology and geothermal
- resource potential of the Alvord Desert area, Oregon, Oregon Dept. Geol, Min. Indus. Open File Rep. 0-80-10, 57 p., 1980. 45. Carrier, D.L. and D.S. Chapman, Gravity and thermal models for the
- Twin Peaks silicic volcanic center, southwestern Utah, J. Geophys. Res., 86, 10287-10302, 1981 46. Chapman, D.S., D.D. Blackwell, W.T. Parry, W.R. Sill, S.H. Ward and
- S.H. Whelan, Regional heat flow and geochemical studies in southwest Utah, Final Rep., v. II, Univ. Utah Geol. Dept. unpubl. rep. submit. to U.S. Geol. Surv., 115 p., 1978.
- 47. Chapman, D.S., M.D. Clement and C.W. Mase, Thermal regime of the Escalante Desert, Utah, with an analysis on the Newcastle Geothermal System, J. Geophys. Res., 86, 11735-11746, 1981.
- 48. Ciancanelli, E.V., Francana Resources, Inc., Denver, Colo., personal communication, 1981. 49. Clark, S.P., Jr., Heat flow at Grass Valley, California, Amer. Geophys.
- Union Trans., 38, 239-244, 1957. 50. Combs, J., Terrestrial heat flow in north central United States, Ph.D.
- thesis, Mass. Inst. Technol., Cambridge, Mass., 317 p., 1970. 51. Combs. L. Heat flow in the Coso geothermal area, Inyo County, Califor-
- nia, J. Geophys. Res., 85, 2411-2424, 1980. 52. Combs, J. and G. Simmons, Terrestrial heat flow determinations in the north central United States, J. Geophys. Res., 78, 441-461, 1973.

- 53. Costain, J.K., Insulating properties of Coastal Plain sediments (South Carolina and North Carolina), in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by I.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5103-2, 95-113, 1976.
- 54. Costain, J.K., Partial confirmation of radiogenic model, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech Inst State Univ Rep VPI&SU-5103-4, C-23-C-26, 1977.
- 55. Costain, J.K. and P.M. Wright, Heat flow at Spor Mountain, Jordan
- Valley, Bingham, and La Sal, Utah, J. Geophys. Res., 78, 8687-8698, anomalies in the eastern United States, in the Nature of the Solid Earth, 1973. edited by E.C. Robertson, McGraw Hill, New York, 544-572, 1972. 56. Costain, J.K., L.D. Perry and J.A. Dunbar, Geothermal gradients and heat flow, in Evaluation and Targeting of Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NM/BAL/EPP-8, in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5103-4, 78. East, J., Hot dry rock geothermal potential of Roosevelt Hot Springs C-2-C-10, 1977. area: Review of data and recommendations, Los Alamos Nat. Lab. Rep. 57 Costain LK, LD, Perry and LA, Dunbar, Geothermai gradients, heat LA-8751-HDR, 45 p., 1981.
- flow, and heat generation, in Evaluation and Targeting of Geothermal 79. Eckstein, Y., Heat flow anomaly at the northwestern flank of the Energy Resources in the Southeastern United States, edited by J.K. Cos-Appalachian Basin, EOS Trans. AGU, 62, 1054, 1981. tain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. 80. Edwards, C.L., M. Reiter, C. Shearer and W. Young, Terrestrial heat VPI&SU-5648-1, C-28-C-53, 1977.

82 p., 1977.

Rep., Item 1, 1978.

NV/LCH/AMN-4, 1979.

AC0778ET28392, 73 p., 1980.

175 p., 1981.

munication. 1981

86, 10719-10733, 1981.

Eng. Tech. Pub., 481, 3-11, 1932.

Florida, Gainesville, Florida, 78 p., 1976.

Lab./Univ. Utah Res. Inst. Open File Rep., 1979.

- 58. Costain, J.K., L.D. Perry, S.S. Dashevsky and B.U. Contrad, Heat flow and heat generation, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by I.K. Costain, L Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5648-3, C-36-C-57, 1978.
- 59. Costain, J.K., L.D. Perry, S.S. Dashevsky, W.S. McClung and S.P. Higgins, Heat flow and heat generation, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State
- Univ. Rep. VPI&SU-5648-5, C-139-C-144, 1979. 60. D'Appolonia Consulting Engineers, Inc., Hot dry rock geothermal evaluation, Cris-Wall site, eastern shore of Maryland and Virginia, Report to Los Alamos Nat. Lab., Contract No. 4-X29-7745G-1, 2, Appendices A, B, C, 1980
- 61. Dashevksy, S.S., Geothermal gradients in the southeastern United States, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5648-3,
- C-24-C-35, 1978. 62. Dashevsky, S.S. and W.S. McClung, Summary of temperature logging of Crisfield, Maryland geothermal test hole, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech.
- Inst. State Univ. Rep. VPI&SU-78ET-27001-7, A-22—A-32, 1979. 63. Dashevsky, S.S. and W.S. McClung, Temperature logs at other locations in the Atlantic Coastal Plain, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by
- J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-78ET-27001-7, A-83-A-88, 1979. 64. Decker, E.R., Heat flow in Colorado and New Mexico, J. Geophys. Res., 74, 550-559, 1969.
- 65. Decker, E.R., Univ. Maine, Orono, Maine, personal communication, 66. Decker, E.R. and F. Birch, Basic heat-flow data from Colorado, Minnesota, New Mexico and Texas, in Basic Heat-Flow Data from the United States, edited by I.H. Sass and R.I. Munroe, U.S. Geol. Surv. Open File Rep. 74-9, 5-6-5-58, 1974.
- 67. Decker, E.R. and R.F. Roy, Basic heat-flow data from the eastern and western United States, in Basic Heat-Flow Data from the United States, edited by J.H. Sass and R.J. Munroe, U.S. Geol. Surv. Open File Rep.
- 74-9, 7-1-7-90, 1974. 68. Decker, E.R. and S.B. Smithson, Heat flow and gravity interpretion across the Rio Grande rift in southern New Mexico and west Texas, J. Geophys. Res., 80, 2542-2552, 1975. 69. Decker, E.R., K.R. Baker, G.J. Bucher and H.P. Heasler, Preliminary
- heat flow and radioactivity studies in Wyoming, J. Geophys. Res., 85,
- 311-321, 1980. 70. Dellachaie, F., A geological and hydro-geochemical study of the LaGrande area, Union County, Oregon, Geotherm. Resour. Council
- Trans., 2, 145-148, 1978. 71. Diment, W.H., Thermal regime of a large diameter borehole: Instability of the water column and comparison of air- and water-filled conditions, Geophys., 32, 720-726, 1967.

- Carolina, J. Geophys. Res., 70, 5635-5644, 1965. 76. Diment, W.H., T.C. Urban and F.A. Revetta, Some geophysical

flow and crustal radioactivity in northeastern New Mexico and south-

and eastern Tennessee, M.S. thesis, Univ. Florida, Gainesville, Florida,

measurements in the Michigan copper district, Amer. Inst. Min. Metall.

eastern Colorado, Geol. Soc. Amer. Bull., 89, 1341-1350, 1978.

81. Emhof, J.W., A geothermal study of southern Virginia, North Carolina

82. Fisher, J., L.R. Ingersoll and H. Vivian, Recent geothermal

83. Fuller, W.R., Heat flow reconnaissance of Florida, M.S. thesis, Univ.

84. Geothermal Power Corp., Shallow thermal gradient data, Roosevelt

85. GeothermEx, Inc., Temperature-gradient and heat flow data, Grass

86. Getty Oil Co., Temperature gradient holes, Colado, Nevada, Earth Sci.

87. Getty Oil Co., Beowawe gradient hole program, Eureka Co., Nevada,

88. Glenn, W.E., D.S. Chapman, D. Foley, R.M. Capuano, D. Cole, B.

Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep. NV/BEO/GOC-3,

Sibbett and S.H. Ward, Geothermal exploration program, Hill Air Force

Base, Davis and Weber Counties, Utah, Final Rep., submit. to U.S.

Dept. Energy, Div. Geotherm. Energy, Contract No. DOE-

LASL Well C/T-2 Roosevelt Hot Springs KGRA, Utah, and applications

to geothermal well logging, Los Alamos Nat. Lab. Rep. LA-8686-MS,

90. Gosnold, W.D., Jr., Geothermal investigations in Nebraska: Methods

and results, in Geothermal Direct Heat Program, Glenwood Springs

Tech, Conf. Proc., J. edited by C. Ruscetta and D. Foley, U.S. Dept.

91. Gosnold, W.D., Jr., Univ. Nebraska, Omaha, Nebraska, personal com-

92. Goyal, K.P. and D.R. Kassoy, A plausible one-dimensional vertical

93. Gregory, A.R. and M.M. Backus, Geopressured formation parameters,

ment, I, edited by M.H. Dorfman and W.L. Fisher, 235-311, 1980.

94. Gregory, R.G., A geothermal study of Alabama, Georgia, and South

95. Griffen, G.M., D.A. Reel and R.W. Pratt, Heat flow in Florida oil test

96. Guffanti, M. and M. Nathenson, Temperature-depth data for selected

mometers, U.S. Geol. Surv. Open File Rep. 81-555, 100 p., 1981.

Florida Bur. Geol. Spec. Publ., 21, 43-63, 1977.

holes and indications of oceanic crust beneath the southern Florida-

Bahamas platform, in The Geothermal Nature of the Floridan Plateau,

deep drill holes in the United States obtained using maximum ther-

model of the East Mesa geothermal field, California, J. Geophys. Res.,

geothermal well, Brazoria County, Texas, in Fourth U.S. Gulf Coast

Geopressured-Geothermal Energy Conference: Research and Develop-

Carolina, M.S. thesis, Univ. Florida, Gainesville, Florida, 108 p., 1978.

Energy Rep. DOE/IT/12079-39 ESL-59, 187-204, 1981.

89. Glenn, W.E., J.B. Hulen and D.L. Nielson, A comprehensive study of

Hot Springs area, Utah, Earth Sci. Lab./Univ. Utah Res. Inst. Open File

Valley, Nevada, Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep.

- 75. Diment, W.H., I.W. Mariner, J. Niheisel and G.E. Siple, Subsurface temperature, thermal conductivity and heat flow near Aiken, South
- 74. Diment, W.H., R. Raspet, M.H. Mayhew and R.W. Werre, Terrestrial heat flow near Alberta, Virginia, J. Geophys. Res., 70, 923-929, 1965.
- Res., 68, 5035-5047, 1963. 73. Diment, W.H. and R.W. Werre, Terrestrial heat flow near Washington, D.C., J. Geophys. Res., 69, 2143-2149, 1964.
- 97. Hallock, W., Preliminary report of observations at the deep well, 72. Diment, W.H. and F.C. Robertson, Temperature, thermal conductivity, Wheeling, West Virginia, Amer. J. Sci., 43, 234-236, 1892. and heat flow in a drilled hole near Oak Ridge, Tennessee, J. Geophys. 98. Henvey, T.L. and G.I. Wasserburg, Heat flow near major strike-slip faults in California, J. Geophys. Res., 76, 7924-7946, 1971.

in a sedimentary basin, Can. J. Earth Sci., 10, 1494-1507, 1973. Dixie Valley, Nevada, unpubl. rep. submit. to Millican Oil Co., Houston, Texas, avail. through Earth Sci. Lab./Univ. Utah Res. Inst., 113 p., 1978.

113. Kevs. W.S., U.S. Geol. Surv., Denver, Colorado, personal communica-

114. King, W. and G. Simmons, Heat flow near Orlando, Florida and

115. Knopf, A., The Mother Lode system of California, U.S. Geol. Surv. Prof.

116. Koenig, J.B., R.W. Greensfelder and C.W. Klein. Geothermal potential

117. Korosec, M.A. and J.E. Schuster, The 1979-1980 geothermal resource

118. Lachenbruch, A.H., Preliminary geothermal model of the Sierra

119. Lachenbruch, A.H., J.H. Sass, R.J. Munroe and T.H. Moses, Jr., Geo-

120. Lachenbruch, A.H. and J.H. Sass, Heat flow and energetics of the San

121. Lambiase, J., Virg. Polytech. Inst. State Univ., Blacksburg, Virginia, per-

122. Laney, R., Los Alamos Nat. Lab., Los Alamos, New Mexico, unpubl.

123. Lang, W.B., Geologic significance of a geothermal gradient curve,

124. Leney, G.W., Preliminary investigations of rock conductivities and ter-

restrial heat flow in southeastern Michigan, M.A. thesis, Univ.

Andreas fault zone, J. Geophys. Res., 85, 6185-6223, 1980.

thermal setting and simple heat conduction methods for the Long

Nevada, J. Geophys. Res., 73, 6977-6988, 1968.

Valley Caldera, J. Geophys. Res., 81, 769-784, 1976.

Amer, Assoc, Petrol, Geol, Bull., 21, 1193-1205, 1937.

Michigan, Ann Arbor, Michigan, 37 p., 1955.

Uvalde, Texas determined from well cuttings, Geothermics, 1, 133-139,

of the Quest Leasehold, Dixie Valley, Nevada, GeothermEx Inc., un-

publ. rep. submit. to Dow Chemical Co., avail. through Earth Sci.

assessment program in Washington, Wash. State Dept. Nat. Res. Open

tion, 1981.

Paper 157, 88 p., 1929.

Lab./Univ. Utah Res. Inst., 1976.

File Rep. 81-3, 270 p., 1980.

sonal communication, 1981.

1972

- development status, geothermal potential and associated economics of
- 112. Keplinger and Assoc., Inc., Interim evaluation of exploration and
- 110. Joyner, W.B., Heat flow in Pennsylvania and West Virginia, Geophys. 25, 1229-1241, 1960. 111. Judge, A.S. and A.E. Beck, Analysis of heat-flow data: Several boreholes
- U.S. Geol. Surv. Prof. Paper 194, 101 p., 1940.
- Planet., Sci. Lett., in press.

- 109. Johnson, W.D., Jr., The gold quartz veins of Grass Valley, California,

- tion of heat flow and radioactivity in New Hampshire (U.S.A.), Earth
- data, 1982. 108. Jaupart, C., J.R. Mann and G. Simmons, A detailed study of the distribu-
- Oregon Dept. Geol. Min. Indus. Open File Rep. 0-78-4, 187 p., 1978. 107. Hunter, J., Los Alamos Nat. Lab., Los Alamos, New Mexico, unpubl.
- 106. Hull, D.A., D.D. Blackwell and G.L. Black, Geothermal gradient data,
- Indus, Open File Rep. 0-77-3, 43 p., 1977
- study of the Brothers Fault Zone, Oregon, Oregon Dept. Geol. Min.
- Rep. 0-77-2, 134 p., 1977. 105. Hull, D.A., D.D. Blackwell, R.G. Bowen and N.V. Peterson, Heat flow
- 104. Hull, D.A., R.G. Bowen, D.D. Blackwell, N.V. Peterson and G.L. Black, Geothermal gradient data, Oregon Dept. Geol. Min. Indus. Open File
- mal gradient data, Brothers Fault Zone, Oregon, Oregon Dept. Geol. Min. Indus. Open File Rep. 0-76-2, 24 p., 1976.
- Geol., 42, 113-122, 1934. 103. Hull, D.A., R.G. Bowen, D.D. Blackwell, and N.V. Peterson, Geother-
- WO and R Ingersoll Postgla recent geothermal measurements in the Calument copper mines, J.
- vestigations of low-temperature geothermal potential in New York State, Los Alamos Nat. Lab. Rep. LA-8960-MS, 74 p., 1981.
- Trans. 3. 317-320, 1979. 101. Hodge, D.S., R. De Rito, K. Hilfiker, P. Morgan and C.A. Swanberg, In-
- 100. Hodge, D.S., K. Hilfiker, P. Morgan and C.A. Swanberg, Preliminary geothermal investigations in New York State, Geotherm. Resour. Council
- 99. Hobba, W.A., Jr., D.W. Fisher, F.J. Pearson, Jr. and J.C. Chemerys, Hydrology and geochemistry of thermal springs of the Appalachians, U.S. Geol, Surv. Prof. Paper 1044-E. 36 p., 1979.
- 125. Leney, G.W. and J.T. Wilson, Preliminary investigations of rock con-

Geol. Soc. Amer. Bull., 66, 1590, 1955.

Resour. Invest. 80-89, 15 p., 1980.

Lab. Rep. LA-8608-MS, 102 p., 1980.

ruces New Mexico 72 n 1980

Open File Rep. 82-150, 240 p., 1982.

VPI&SU-78-ET-2701-8, B-22-B-30, 1980.

personal communication, 1981.

Petrol, Geol, Bull., 8, 525-526, 1924.

communication, 1981.

data, 1981

8, 721-724, 1976.

3-1-3-185, 1974.

Rep. 75-56, 267 p., 1975.

Trans., 5, 299-302, 1981.

43, 1-20, 1948.

28 p., 1965.

p., 1979.

- 127. Levitte, D. and D. Gambill, Geothermal potential of west-central New Mexico from geochemical and thermal gradient data, Los Alamos Nat.
- 128. Lohse, A. and C.D. Hopkins, No. 2 geothermal well-of-opportunity, Wayne Co., Georgia, U.S. Dept. Energy Rep. NVO-1528-1, 12 p., 1978. 129. Lohse, R.L., A heat flow study of Dona Ana County, Southern Rio Grande rift, New Mexico, M.S. thesis, New Mexico State Univ., Las
- 130. Lovering, T.S., Geothermal gradients, recent climatic changes, and rate of sulfide oxidation in the San Manuel District, Arizona, Econ. Geol.
- 131. Lovering, T.S. and H.T. Morris, Underground temperatures and heat flow in the East Tintic District, Utah, U.S. Geol. Surv. Prof. Paper 504F,
- 132. Mase, C.W., S.P. Galanis, Jr. and R.J. Munroe, Near surface heat flow in Saline Valley, California, U.S. Geol. Surv. Open File Rep. 79-1136, 52
- 133. Mase, C.W., J.H. Sass and A.H. Lachenbruch, Near-surface hydrothermal regime of the Lassen "Known Geothermal Resource Area," California, U.S. Geol. Surv. Open File Rep. 80-1230, 31 p., 1980. 134. Mase, C.W. and J.H. Sass, Heat flow from the western arm of the Black
- Rock Desert, Nevada, U.S. Geol. Surv. Open File Rep. 80-1238, 38 p., 135. Mase, C.W., J.H. Sass, C.A. Brook and R.J. Munroe, Shallow hydrothermal regime of the East Brawley and Glamis KGRA's, Salton Trough,
- California, U.S. Geol. Surv. Open File Rep. 81-834, 57 p., 1981. 136. Mase, C.W., J.H. Sass, A.H. Lachenbruch and R.J. Munroe, Preliminary heat-flow investigations of the California Cascades, U.S. Geol. Surv.
- 137. Mathews, M., R.H. Pettitt and D.J. Miles, High temperature logging for basic development of HDR reservoirs, Geotherm. Resour. Council
- 138. Maurath, G. and Y. Eckstein, Heat flow and heat production in northwestern Pennsylvania, Geotherm. Resour. Council Trans., 5, 103-106, 139. McClung, W.S., Temperature logs of observation wells in the coastal
- plains of Georgia, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep.
- 140. McClung, W.S., Virg. Polytech. Inst. State Univ., Blacksburg, Virginia, 141. Meyer, H.J., Northwest Geothermal Corp., Portland, Oregon, personal
- 142. Miser, H.D., Temperature of Oklahoma's deepest hole, Amer. Assoc.
- 143. Morris, H.T., U.S. Geol. Surv., Menlo Park, California, unpublished 144. Muffler, L.J.P. and D.L. Williams, Geothermal investigations of the U.S.
- Geological Survey in Long Valley, California 1972-73, J. Geophys. Res., 145. Munroe, R.J. and J.H. Sass, Basic heat-flow data from western United
- States, in Basic Heat-Flow Data from the United States, edited by J. H. Sass and R.J. Munroe, U.S. Geol. Surv. Open File Rep. 74-9,
- 146. Noble, J.A., Evidence for a steepening of geothermal gradients in some deep mines and drill holes, Amer. J. Sci., 246, 426-440, 1948. 147. Olmsted, F.H., P.A. Glancy, J.R. Harrill, F.E. Rush and A.S. Van Denburgh, Preliminary hydrogeologic appraisal of selected hydrothermal

systems in northern and central Nevada, U.S. Geol. Surv. Open File

- 148. Perry, L.D., Heat flow in the Atlantic Coastal Plain, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg.
- Polytech. Inst. State Univ. Rep. VPI&SU-5648-5, C-28-C-53, 1979. 49. Perry, L.D., J.K. Costain and P.A. Geiser, Heat flow in western Virginia and a model for the origin of thermal springs in the folded Appalachians, J. Geophys. Res., 84, 6875-6883, 1979.

- 150. Perry, L.D., S.P. Higgins and M.M. McKinney, Heat flow and heat generation in the Atlantic Coastal Plain, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain and L. Glover, III, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-78ET-27001-8, B-114-B-153, 1980.
- 151. Perry, L.D., S.P. Higgins and M.M. McKinney, Heat flow and heat generation in the Piedmont, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain and L. Glover, III, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-78ET-27001-8, B-154-B-179, 1980.
- 152 Perry L.D., W.S. McClung, LK, Costain, S.P. Higgins and M.M. McKinney, Heat flow-heat generation, in Distribution and Analysis of 300 m.y. Old Granites as a Potential Geothermal Resource, edited by J.K. Costain and L. Glover, III. Virg. Polytech. Inst. State Univ. Rep. LASL-2, 1-13 1980
- 153. Rahman, J.L. and R.F. Roy, Preliminary heat flow measurement at the Illinois deep drill hole, EOS Trans. AGU, 62, 388, 1981. 154. Reiter, M.A. and J.K. Costain, Heat flow in southwestern Virginia, J
- Geophys. Res., 78, 1323-1333, 1973. 155. Reiter, M., C.L. Edwards, H. Hartman and C. Weidman, Terrestrial heat flow along the Rio Grande rift, New Mexico and southern Colorado
- Geol. Soc. Amer. Bull., 86, 811-818, 1975. 156. Reiter, M., G. Simmons, M. Chessman, T. England, H. Hartman and C. Weidman, Terrestrial heat flow near Datil, New Mexico, New Mex.
- Bur. Mines Min. Resour. Ann. Rep., 33-37, 1976. 157. Reiter, M., C. Weidman, C.L. Edwards and H. Hartman, Subsurface temperature data in Iemez Mountains, New Mexico, New Mex. Bur.
- Mines Min. Resour. Circ. 151, 16 p., 1976. 158. Reiter, M. and R. Smith, Subsurface temperature data in the Socorre Peak KGRA, New Mexico, Geotherm. Energy Mag., 5, 37-41, 1977.
- 159. Reiter, M., C. Shearer and C.L. Edwards, Geothermal anomalies along the Rio Grande rift in New Mexico, Geology, 6, 85-88, 1978. 160. Reiter, M., A.J. Mansure and C. Shearer, Geothermal characteristics of
- the Colorado Plateau, Tectonophysics, 61, 183-195, 1979. 161. Reiter, M., A.I. Mansure and C. Shearer, Geothermal characteristics of the Rio Grande rift within the southern Rocky Mountain Complex, in Rio Grande Rift: Tectonics and Magmatism, edited by R. Riecker, Amer.
- Geophys. Union, Washington, D.C., 253-267, 1979. 162. Reiter, M. and C. Shearer, Terrestrial heat flow in eastern Arizona: A first report, J. Geophys. Res., 84, 6115-6120, 1979.
- 163. Repplier, F.N., Colo. Geol. Surv., Denver, Colorado, personal communication, 1981.
- 164. Ringrose, C.D., Temperature depth profiles in the San Luis Valley and Canon City areas, Colorado, Colo. Geol. Surv. Open File Rep. 80-12, 18 p., 1980.
- 165. Robison, I.H., Data from geothermal wells near Oasis, Lower Coachella Valley, California, U.S. Geol. Surv. Open File Rep. 81-411, 26 p., 1981. 166. Rohrer, C.S. and J.K. Costain, Geothermal gradients and heat generation, in Evaluation and Targeting of Geothermal Energy Resources in the Southeastern United States, edited by J.K. Costain, L. Glover, III, and A.K. Sinha, Virg. Polytech. Inst. State Univ. Rep. VPI&SU-5103-3,
- C-1-C-21, 1977. 167. Roy, R.F., Heat flow measurements in the United States, Ph.D. thesis, Harvard Univ., Cambridge, Mass., 102 p., 1963.
- 168. Roy, R.F., E.R. Decker, D.D. Blackwell and F. Birch, Heat flow in the United States, J. Geophys. Res., 73, 5207-5221, 1968. 169. Roy, R.F., B. Taylor, A.J. Pyron and J.C. Maxwell, Heat flow measure-
- ments in the state of Arkansas, Los Alamos Nat. Lab. Rep. LA-8569-MS, 15 p., 1980. 170. Sanford, R.M., R.L. Bowers and J. Combs, Rio Grande rift geothermal
- exploration case history: Elephant Butte prospect, south central New Mexico, Geotherm. Resour. Council Trans., 3, 609-612, 1979. 171. Sass, J.H., R.J. Munroe and A.H. Lachenbruch, Measurement of
- geothermal flux through poorly consolidated sediments, Earth Planet. Sci. Lett., 4, 293-298, 1968, 172. Sass, J.H., A.H. Lachenbruch, R.J. Munroe, G.W. Greene and H.
- Moses, Jr., Heat flow in the western United States, J. Geophys. Res., 76, 6376-6413, 1971. 173. Sass, J.H. and E.A. Sammel, Heat flow near Klamath Falls, Oregon, J.
- Geophys. Res., 81, 4863-4868, 1976. 174. Sass, I.H., F.H. Olmsted, M.L. Sorev, H.A. Wollenberg, A.H. Lachenbruch, R.J. Munroe and S.P. Galanis, Jr., Geothermal data from test wells in Grass Valley and Buffalo Valley, Nevada, U.S. Geol. Surv. Open File Rep. 76-85, 43 p., 1976.

- 175. Sass, J.H., S.P. Galanis, Jr., R.J. Monroe and T.C. Urban, Heat flow data from southeastern Oregon, U.S. Geol. Surv. Open File Rep. 76-217, 52 p., 1976.
- 176. Sass, J.H., H.A. Wollenberg, D.E. di Somma and J.P. Ziagos, Heat flow near Kyle Hot Springs, Buena Vista Valley, Nevada, U.S. Geol. Surv. Open File Rep., 76-862, 16 p., 1976.
- 177. Sass, J.H., J.P. Ziagos, H.A. Wollenberg, R.J. Munroe, D.E. di Somma and A.H. Lachenbruch, Application of heat flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada, U.S. Geol. Surv. Open File Rep. 77-762, 125 p., 1977.
- 178. Sass, J.H., S.P. Galanis, Jr., B.V. Marshall, A.H. Lachenbruch, R.J. Munroe and T.H. Moses, Jr., Conductive heat flow in the Randsburg area, California, U.S. Geol. Surv. Open File Rep. 78-756, 45 p., 1978. 79. Sass, J.H., M.L. Zoback and S.P. Galanis, Jr., Heat flow in relation to
- hydrothermal activity in the Southern Black Rock Desert, Nevada, U.S. Geol. Surv. Open File Rep. 79-1467, 39 p., 1979. 180. Sass, J.H., R.J. Munroe and C. Stone, Heat flow from five uranium test
- wells in west-central Arizona, U.S. Geol. Surv. Open File Rep. 81-1089, 42 p., 1981.
- 181. Scattolini, R., Heat flow and heat production studies in North Dakota, Ph.D. thesis, Univ. North Dakota, Grand Forks, North Dakota, 264 p., 1978.
- 182. Schlorholtz, M.W., Terrestrial heat flow in southeastern Ohio, M.S. thesis, Kent State Univ., Kent, Ohio, 77 p., 1979.
- 183. Schlorholtz, M. and Y. Eckstein, Terrestrial heat flow in Washington County, southeast Ohio, Geol. Soc. Amer. Abstr. Prog., 11, 255, 1979. 184. Schuster, J.E. and M.A. Korosec, Preliminary report on heat-flow drill-
- ing in Washington during 1981, Wash. State Dept. Nat. Resour. Open File Rep. 81-8, 36 p., 1981 185. Shearer, C.R. and M. Reiter, Basic heat flow data in New Mexico, New
- Mex. Bur. Mines Min. Resour. Open File Rep. 93, 1978. 186. Shearer, C.R. and M. Reiter, Terrestrial heat flow in Arizona, J
- Geophys. Res., 86, 6249-6260, 1981. 187. Simmons, G., J. Mann and C. Jaupart, Mass. Inst. Technol., Cambridge,
- Mass., personal communication, 1982. 188. Smith, D.L., Heat flow at Ducktown, Tennessee, Southeastern Geology, 18, 99-106, 1976.
- 189. Smith, D.L. and W.R. Fuller, Terrestrial heat flow values in Florida and the thermal effects of the aquifer system, in The Geothermal Nature of
- the Floridan Plateau, Florida Bur. Geol. Spec. Publ., 21, 91-130, 1977. 190. Smith, D.L., R.G. Gregory and M.J. Garvey, A thermal reconnaissance of Georgia: Heat flow and radioactive heat generation, in Short Contributions to the Geology of Georgia, Georgia Geol. Surv. Bull., 93, 93-104, 1978.
- 191. Smith, D.L., W.T. Dees and D.W. Harrelson, Geothermal conditions and their implications for basement tectonics in the Gulf Coast margin, Trans. Gulf Coast Assoc. Geol. Soc., 31st Ann. Mtg., Corpus Christi, Texas, Oct. 21-23, 181-190, 1981.
- 192. Smith, D.L., R.G. Gregory and J.W. Emhof, Geothermal measurements in the southern Appalachian Mountains and southeastern Coastal Plain, Amer. I. Sci., 281, 282-298, 1981.
- 193. Smith, R.N., Heat flow of the western Snake River Plain, Geotherm. Resour. Council Trans., 4, 89-92, 1980.
- 194. Sorey, M.L., Measurement of vertical groundwater velocity from temperature profiles in wells, Water Resour. Res., 7, 963-970, 1971.
- 195. Southland Royalty Co., Six shallow gradient holes, Dixie Valley, Nevada, unpubl. rep. avail. through Earth Sci. Lab./Univ. Utah Res.
- Inst., 1979. 196. Spicer, H.C., Geothermal gradients and heat flow in the Salt Valley anticline, Utah, Boll. Geofis. Appl., 6, 263-282, 1964.
- 197. Spicer, H.C., A compilation of deep Earth temperature data: USA 1910-1945, U.S. Geol. Surv. Open File Rep. 64-147, 1964. 198. Spurr, J.E., Geology of the Tonopah mining district, U.S. Geol. Surv.
- Prof. Paper 42, 295, p., 1905, 199. Staub, W.P. and N.L. Treat, A geothermal resource appraisal of the Tennessee Valley Region, Inst. Energy Analysis, Oak Ridge Assoc. Univ.,
- Oak Ridge, Tennessee, 132 p., 1981 200. Steele, J.L., A heat flow study in the Turtle Lake Quadrangle,
- Washington, M.S. thesis, Southern Methodist Univ., Dallas, Texas, 60 p., 1975.
- 201. Steeples, D.W., Geothermal evaluation of Kansas-preliminary results, in Geothermal Direct Heat Program, Glenwood Springs Tech. Conf. Proc., I, edited by C. Ruscetta and D. Foley, U.S. Dept. Energy Rep. DOE/ID12079-39 ESL-59, 148-164, 1981.

- ample for the Continental Scientific Drilling Program, EOS Trans. AGU, 62, 473-475, 1981.
- 203. Stone, C., Preliminary assessment of the geothermal potential of the northern Hassayampa Plain, Maricopa County, Arizona, in Geothermal Studies in Arizona with Two Area Assessments, Progress Report Jan. 16,
- 1979-Nov. 1, 1979, edited by W.R. Hahman, Ariz. Bur. Geol. Min. Technol, Rep. DOE TID/12009, 1-67, 1979. 204. Stone, C., Results of heat flow drilling, in Springerville Geothermal Project, Final Report, Geology, Geochemistry, Geophysics, Chapt. 2, Ariz.
- 38-54, 1980. 205. Swanberg, C.A., S.J. Mitchell, R.L. Lohse and D.D. Blackwell, Heat flow
- 206. Trexler, D.T., B.A. Koenig, J. Flynn and J.L. Bruce, Assessment of
- geothermal resources of Carson-Eagle Valleys and Big Smokey Valley Nevada, Nev. Bur. Mines Geol. Open File Rep. DOE/NV/10039-2. 251 p., 1980.
- 207. Trexler, D.T., B.A. Koenig, T. Flynn, J.L. Bruce and G. Ghusn, Jr., Lowto-moderate temperature geothermal resource assessment for Nevada, area specific studies, Nev. Bur. Mines Geol. Open File Rep. DOF/NV/10039-3, 223 p., 1981.
- 208. Union Oil Co., Cove Fort-Sulphurdale area, Beaver and Millard Counties, Utah, temperature gradient investigation (25 holes), Earth Sci. Lab./Univ. Utah Res. Inst. Open File Rep., Item 4, 1976.
- 209. Urban, T.C., Terrestrial heat flow in the middle Atlantic states, Ph.D. thesis, Univ. Rochester, Rochester, New York, 398 p., 1971. 210. Urban, T.C., W.H. Diment and A.L. Baldwin, Basic heat-flow data from
- edited by J.H. Sass and R.J. Munroe, U.S. Geol. Surv. Open File Rep. 74-9, 6-1-6-66, 1974.
- 211. Urban, T.C. and W.H. Diment, Heat flow of the south flank of the Snake River Plain, Geol. Soc. Amer. Abstr. Prog., 7, 648, 1975. 212. Urban, T.C., W.H. Diment, J.H. Sass and I.M. Jamieson, Heat flow at
- the Development and Use of Geothermal Resources, San Francisco, May 20-29, 1241-1245, 1975.
- 213. Urban, T.C., W.H. Diment and M. Nathenson, East Mesa geothermal anomaly, Imperial County, California: Significance of temperatures in a deep drill hole near thermal equilibrium, Geotherm. Resour. Council
- Trans., 2, 667-670, 1978. 214. Van Orstrand, C.E., Some evidence on the variation of temperature with geologic structure in California and Wyoming oil districts, Econ.
- Geol., 21, 145-165, 1926. 215. Van Orstrand, C.E., On the correlation of isogeothermal surfaces with the rock strata, Physics, 2, 139-153, 1932.
- Geology, edited by W.E. Wrather and F.H. Lahee, Amer. Assoc. Petrol. Geol., 989-1021, 1934.
- depths in the crust of the earth, Trans. Amer. Geophys. Union, 18, 21-33, 1937.
- western United States, Geophys., 34, 463-478, 1969. 219. White, D.E., Conductive heat flow in research drill holes in thermal areas of Yellowstone National Park, Wyoming, J. Res. U.S. Geol. Surv.,
- 6, 765-774, 1978. 220. Woodruff, K.D., Preliminary targeting of geothermal resources in Delaware: Progress Report, July 15, 1978-July 14, 1979, U.S. Dept.
- 221. Youngs, L.G., Calif. Div. Mines Geol., Sacramento, California, personal communication, 1981. 222. Youngs, L.G., C.F. Baron, R.H. Chapman, G.W. Chase, C.T. Higgins,
- H.H. Majmundar and G.C. Taylor, Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County, California, Calif, Dept, Conserv, Div, Mines Geol., unpubl. rep. submit to U.S. Dept. Energy, Div. Geotherm. Energy, 1980.
- 223. Zabel, D.A., Determination of terrestrial heat flow in southeastern North Dakota, M.S. thesis, Univ. North Dakota, Grand Forks, North Dakota, 36 p., 1975.
- 224. Ziagos, J.P., J.H. Sass and R.J. Munroe, Heat flow near Charleston, South Carolina, U.S. Geol. Surv. Open File Rep. 76-148, 21 p., 1976.

ductivity and terrestrial heat flow in southeastern Michigan (abstr.) 126. Leonard, R.B. and W.A. Wood, Geothermal gradients in the Missoula and Bitterroot Valleys, west-central Montana, U.S. Geol, Surv. Water

☆U.S. GOVERNMENT PRINTING OFFICE 1982 - 676-945

Energy, Div. Geotherm. Energy Rep. COO-4715-1, 31 p., 1979.

218. Warren, R.E., J.G. Sclater, V. Vacquier and R. Roy, Comparison of terrestrial heat flow and transient magnetic fluctuations in the south-

217. Van Orstrand, C.E., On the estimation of temperatures at moderate

216. Van Orstrand, C.E., Temperature gradients, in Problems of Petroleum

the Geysers, California, USA, in Proc. Second United Nations Symp. on

eastern United States, in Basic Heat-Flow Data from the United States.

in the Upper Mississippi Embayment, unpubl. rep. submit. to U.S.

Bur, Geol. Min. Technol., unpubl. rep. submit. to U.S. Dept. Energy

202. Steeples, D.W. and M.E. Bickford, Piggyback drilling in Kansas: An ex-

128 CA 40 50.5 122 36.7 129 CA 40 210 120 54.7 187 34.6 32.6 311 CO 36 107 40.0 75 55.5 35.7 92.2 66 120 CA 40 21.0 121 31.45 226 40.0 310 CO 37 40.0 72. 40.0 72.3 55.54 40.7 55.54 40.7 52.3 55.54 40.0 40.0 40.0 40.0 40.0 40.0 72.0 65 65 65 131 CA 40 14.4 120 70.0 31.6 CO 37 47.0 88 45.0 75.0 66 70.0 71.0	682 MT 45 55. 112 01. 260 19.8 1.8 7.8 22 683 MT 45 43. 112 20. 150 30.1 1.94 6.4 22 684 MT 45 23. 109 54.5 269 19.50 1.52 7.72 2W 685 MT 45 22. 109 49. 253 18.7 1.39 7.8 172 686 MT 45 08. 108 54.1 1742 32.03 1.7 69 688 MT 45 00.5 108 52.2 1525 30.99 1.6 69 727 ND 48 56.1 100 49.6 940 55.0 2.2 4.0 52 730 ND 48 56.3 102 26. 1800 56.0 2.2 4.0 52 730 ND 48 18. 101 40. 1143 39.8 1.4 3.5 18	948 NM 33 53. 106 21. 180 28.84 1.56 155 949 NM 33 45. 107 49. 350 54.40 1.75 3.21 155 950 NM 33 34. 104 30.8 125 16.23 1.44 195 2W 951 NM 33 34. 107 36. 250 61.75 3.36 155 2W 953 NM 33 31. 108 11. 150 61.77 1.98 3.21 155 954 NM 33 19. 107 42. 162 44. 2.92 155 2W 956 NM 33 17.1 107 16.3 160 37.8 1.8 155 170 2W 956 NM 33 11.6 107 14.3 152 34.6 2.0 170 3W 3W 957 NM 33 04.5 107 7.52 51.3 2.5 170 <	1087 NV 37 03. 116 02. 701 42.03 07 172 1088 NV 36 48. 116 24. 290 35.4 1.6 4.4 172 1089 NV 36 46. 116 07. 808 41.77 1.81 4.42 172 1090 NV 36 46. 115 52. 350 39.9 2.2 6.5 172 1091 NV 36 38. 116 18. 244 31.1 2.0 6.3 172 1092 NV 36 36. 115 47. 457 15.7 2.17 14.2 172 1093 NV 35 28. 115 08. 315 25. 2.33 67 168 2W OKLAHOMA 1131 OK 36 59.9 97 18.9 430 35.80 197 216 1133 OK 36 59.6 97 19.8 719 32.66	T261 OR 43 51.4 120 15.3 58 52.9 1.85 3.5 103 105 T262 OR 43 47.94 122 25.06 140 30.4 2.86 37 2W T263 OR 43 47.94 122 18.83 135 60.5 2.70 1.65 26 37 T264 OR 43 47.6 122 319 T34 44.62 26 37 2W T265 OR 43 45.7 118 23.1 100 68.4 2.7 4.0 28 30 T266 OR 43 45.7 118 23.1 100 68.4 2.7 4.0 28 30 T268 OR 43 43.15 122 19.97 150 60.0 2.42 3.99 37 104 1270 OR 43 40.1 117 23. 75 53.5 1.5 2.8 30 1272 OR 43 40.1 117	No. St. Lat. Long. Depth Grad. H.F. T.C. Ref. 1410 UT 41 01.72 113 46.67 155 42.2 2.10 46 1411 UT 40 47. 112 04.3 63 58.72 1.8 3.0 55 1412 UT 40 31.5 112 09. 1156 19.54 1.89 55 67 168<2W 1413 UT 40 26.5 109 38.5 265 13.2 65 65 1414 UT 40 10. 109 18. 2.00 131 143 168 3W 1415 UT 39 55.67 112 03.50 357 70.40 131 143 168 3W 1417 UT 39 52.2 112 0.46 59 446 124 46.85 99 44.80 67 167 168	No. St. Lat. Long. Depth Grad. H.F. T.C. Ref. 1590 WA 46 42.9 121 34.7 115 46.5 117 1590 WA 46 41.8 120 40.7 343 25.1 117 1591 WA 46 41.8 120 40.7 343 25.1 118BHT 1592 WA 46 60.44 121 01.71 153 93.0 184 1593 WA 46 30.07 121 18.43 153 54.24 184 2W 1594 WA 46 35.3 121 23.5 150 50.7 19 117<2W 1595 WA 46 35.4 122 51.1 152 41.8 19 19 197 19 117 2W 1595 WA 46 35.4 122 51.1 122 41.8 19 19 197 19 172 172 1595 WA 46	AGLE PASS
156 C 38 5.7 12.0 39 Co 37 0.2 17 0.4 18.0 39 Co 37 0.2 17.0 18.0 17.0 1	745 NE 42 54.1 100 30.3 185 48. 1.96 4.06 90 747 NE 42 36.1 100 30.3 150 64. 3.47 5.26 90 747 NE 42 36.7 102 12.3 200 38. 1.56 4.06 90 748 NE 42 34.2 102 38.9 235 45. 1.84 4.06 90 749 NE 42 34.2 102 38.9 235 45. 1.84 4.06 90 750 NE 42 38.9 70 2.55 1.84 40.6 90 751 NE 41 49.7 103 17.0 153 60. 3.16 5.26 90 753 NE 41 36.4 101 48.2 570 47. 1.24 2.63 90 755 NE 41 36.4 101 48.2 570 54. 1.41 2.63 90	976 NM 32 32 106 20. 290 39.48 2.18 7.5 7.5 978 NM 32 30. 106 06. 300 30.54 1.75 155 979 NM 32 27. 106 36. 910 35.8 2.48 159 185 980 NM 32 25.5 106 06. 274 40.1 2.24 5.59 185 981 NM 32 25.5 106 07. 600 34.5 2.20 6.36 159 983 NM 32 25.1 106 07. 600 34.5 2.20 6.36 159 984 NM 32 23.4 103 57.3 882 8.0 9.68 11.57 155 985 NM 32 22. 106 41. 350 40.1 129 159 185 2W 987 NM 32 17.3 106 44.75 41.33 2.17 168 156	1150 OK 35 24.0 97 27.1 1219 17.06 197 216 1152 OK 35 22.4 99 05.3 610 18.04 197 216 1153 OK 35 21.8 96 28.9 914 40.25 96 197 216 9W 1155 OK 35 17.35 96 193 991 39.87 96 197 216 9W 1156 OK 35 13.2 96 397 1067 32.49 96 197 216 5W 1157 OK 35 03.8 96 39.4 1219 31.36 96 197 216 5W 1159 OK 35 03.8 96 29.1 137.16 96 197 216 3W 1160 OK 35 05.5 96 17.5 1585 38.73 142 216 1161 OK 34 27.90 97 33.85 686 13.78 96 <td>1269 OR 43 12. 119 0.2. 190 0.1. 1.1</td> <td>1422 UT 39 41.9 112 55.58 55.7 3.16 46 1423 UT 39 0.02 110 24.08 575 57.7 3.16 46 1424 UT 39 0.02.7 110 54.48 525 14.7 1.30 3.38 66 196 197 1425 UT 38 55.6 109 94.5 594 38.71 1.30 3.38 66 196 197 1428 UT 38 51.1 109 30.1753 18.87 1.10 96 196 197 1430 UT 38 4637 110 10.00 455 10.80 1.22 27 1433 UT 38 4637 111 0.37 525 14.25 1.29 27 1433 UT 38 45.83 111 16.52 750 350.0 2.78 6.84 27 1434 UT 38 43.37 111 09.15 55 1.61 8.25</td> <td>1603 WA 46 31.32 121 56.37 129 46. 19 117 1604 WA 46 31.22 120 00.0 219 45.8 11 9BHT 1605 WA 46 30.4 122 29.2 233 27.0 19 1606 WA 46 26.0 119 47.0 2500 37.1 1.39 3.0 19 145 172 1608 WA 46 26. 120 37. 179 33.7 18 19 197 216 3W 1610 WA 46 24.7 122 54.0 262 12.20 19 11 18HT 1613 WA 46 21.1 118 52.5 270 20.95 16.3 19 2W 1613 WA 46 21.1 119 16.2 1079 30.0 1.13 3.80 19 172 1616 WA 46 10.37 122 135 1.5 11 116 1</td> <td>CORPUC CHRISTI</td>	1269 OR 43 12. 119 0.2. 190 0.1. 1.1	1422 UT 39 41.9 112 55.58 55.7 3.16 46 1423 UT 39 0.02 110 24.08 575 57.7 3.16 46 1424 UT 39 0.02.7 110 54.48 525 14.7 1.30 3.38 66 196 197 1425 UT 38 55.6 109 94.5 594 38.71 1.30 3.38 66 196 197 1428 UT 38 51.1 109 30.1753 18.87 1.10 96 196 197 1430 UT 38 4637 110 10.00 455 10.80 1.22 27 1433 UT 38 4637 111 0.37 525 14.25 1.29 27 1433 UT 38 45.83 111 16.52 750 350.0 2.78 6.84 27 1434 UT 38 43.37 111 09.15 55 1.61 8.25	1603 WA 46 31.32 121 56.37 129 46. 19 117 1604 WA 46 31.22 120 00.0 219 45.8 11 9BHT 1605 WA 46 30.4 122 29.2 233 27.0 19 1606 WA 46 26.0 119 47.0 2500 37.1 1.39 3.0 19 145 172 1608 WA 46 26. 120 37. 179 33.7 18 19 197 216 3W 1610 WA 46 24.7 122 54.0 262 12.20 19 11 18HT 1613 WA 46 21.1 118 52.5 270 20.95 16.3 19 2W 1613 WA 46 21.1 119 16.2 1079 30.0 1.13 3.80 19 172 1616 WA 46 10.37 122 135 1.5 11 116 1	CORPUC CHRISTI
PN0 CA JY HZ LZ HZ HZ <t< td=""><td>853 NM 36 50 107 55 710 31.80 1.47 155 860 NM 36 49 104 41. 225 38.31 2.13 5.56 80 861 NM 36 47. 107 50. 520 29.01 172 5.94 155 863 NM 36 47. 104 42. 125 61.91 242 67.70 80 864 NM 36 45. 106 48 160 38 1.44 155 866 NM 36 45. 107 43. 450 28.94 1.33 4.59 155 866 NM 36 42. 107 43. 450 28.94 1.33 4.59 155 870 NM 36 30. 107 40 650 27.31 1.26 46.30 155 168 3W 871 NM 36 36. 107 21. 1208 52.3 155 38.72</td><td>1008 NV 41 045 119 011 90 7022 227 320 14 1000 NV 40 55. 116 01. 152 22.2 17 6.68 172 1011 NV 40 55. 119 05.1 17 32.8 155 150 173 1013 NV 40 55.0 119 13.3 102 63.1 15 173 4W 1015 NV 40 45.9 119 13.3 102 63.1 15 173 4W 1016 NV 40 37.1 170 39.3 100 782.2 2.8 174 177 85 10W 1010 NV 40 33.1 177 46.7 166 3.2 73 3.8 85 172 4W 1023 NV 40 33.1 177 66 1410 3.124 350</td><td>1182 OR 45 23.6 721 48.4 1214 60. 2.4 4.5 2.3 1184 OR 45 21.9 118 32.6 280 12.7 104 1186 OR 45 21.5 118 07.5 150 35.3 .06 1186 OR 45 19.70 117 54.18 85 23.6 .24 .43 .24 1180 OR 45 19.77 12.4 42.5 584 74.48 .25 .141 38 1190 OR 45 17.8 121 47.8 400 51.2 2.1 4.04 23 1191 OR 45 17.7 12.1 43.5 20 49.58 .21 .141 380 38 1192 OR 45 13.45 117 51.72 .20 13.0 36.0 1.41 .300 38 1199 OR 45 03.3 122 36.9 170 28.9 .06 .06 .104</td><td>SOUTH DACUT 1356 50 44 12 103 45 2048 2120 0.5 512 172 1357 50 44 103 45 2048 2120 0.5 512 172 1359 50 44 06 103 43 230 520 7.77 0.5 6.70 172 1360 50 43 06 12 100 27 1277 1495 997 26 1371 1X 36 12 100 27 1277 1495 997 26 1373 1X 34 02 98 55 588 22.84 197 26 1373 1X 34 02 98 55 589 21.84 197 26 1373 1X 33 38 100 15 732 16.79 96 197 216 1374 1X 33 04 98 1321 33.41 197 26 1376 1X</td><td>1456 UT 36 0.26 113 24.05 93 40 153 3.82 47 1457 UT 37 59.06 113 57.03 60 49 1.87 3.82 47 1458 UT 37 59.06 113 57.37.03 60 49 1.87 3.82 47 1450 UT 37 59.06 113 57.37.03 60 49 1.87 3.82 47 1460 UT 37 53.00 113 26.20 100 46 160 3.35 47 1461 UT 37 44.33 114 02.32 100 82 3.42 4.30 47 1466 UT 37 43.3 111 09 60 21.6 103 4.04 47 1466 UT 37 43.88 113 33.06 27.78 2.12 172 6W 1469 UT 37 36.88 113 0.10 15.1 158 1.52 160</td><td>1637WA4543.812226.210326.7991638WA4540.012222.612723.0991640WA4538.7812158.0818072.81842W1640WA4538.7812207.712952.7991643WA4535.9212223.8815231.5191.171642WA4536.610226.418828.7191643WA4536.610952.2006.156.92W1659WY4456.610952.2006.12.18.46.91661WY4420.010405.220026.12.18.46.91662WY4420.010405.220026.12.18.46.91664WY4410.01067.030.901.34.01896197.2162W1664WY4356.1810838.6630.536.391.86.97186.9772.61666WY4348.310821.091429.1996197.21621.61667WY4348.310821.091429.1996197.2169W1673WY4348.310821.091429.1996<td< td=""><td>Open colspan="2">Open colspan="2"Open colspan="2">Open colspan="2">Open colspan="2"Open colspan="2">Open colspan="2"Open colspan="2"Op</td></td<></td></t<>	853 NM 36 50 107 55 710 31.80 1.47 155 860 NM 36 49 104 41. 225 38.31 2.13 5.56 80 861 NM 36 47. 107 50. 520 29.01 172 5.94 155 863 NM 36 47. 104 42. 125 61.91 242 67.70 80 864 NM 36 45. 106 48 160 38 1.44 155 866 NM 36 45. 107 43. 450 28.94 1.33 4.59 155 866 NM 36 42. 107 43. 450 28.94 1.33 4.59 155 870 NM 36 30. 107 40 650 27.31 1.26 46.30 155 168 3W 871 NM 36 36. 107 21. 1208 52.3 155 38.72	1008 NV 41 045 119 011 90 7022 227 320 14 1000 NV 40 55. 116 01. 152 22.2 17 6.68 172 1011 NV 40 55. 119 05.1 17 32.8 155 150 173 1013 NV 40 55.0 119 13.3 102 63.1 15 173 4W 1015 NV 40 45.9 119 13.3 102 63.1 15 173 4W 1016 NV 40 37.1 170 39.3 100 782.2 2.8 174 177 85 10W 1010 NV 40 33.1 177 46.7 166 3.2 73 3.8 85 172 4W 1023 NV 40 33.1 177 66 1410 3.124 350	1182 OR 45 23.6 721 48.4 1214 60. 2.4 4.5 2.3 1184 OR 45 21.9 118 32.6 280 12.7 104 1186 OR 45 21.5 118 07.5 150 35.3 .06 1186 OR 45 19.70 117 54.18 85 23.6 .24 .43 .24 1180 OR 45 19.77 12.4 42.5 584 74.48 .25 .141 38 1190 OR 45 17.8 121 47.8 400 51.2 2.1 4.04 23 1191 OR 45 17.7 12.1 43.5 20 49.58 .21 .141 380 38 1192 OR 45 13.45 117 51.72 .20 13.0 36.0 1.41 .300 38 1199 OR 45 03.3 122 36.9 170 28.9 .06 .06 .104	SOUTH DACUT 1356 50 44 12 103 45 2048 2120 0.5 512 172 1357 50 44 103 45 2048 2120 0.5 512 172 1359 50 44 06 103 43 230 520 7.77 0.5 6.70 172 1360 50 43 06 12 100 27 1277 1495 997 26 1371 1X 36 12 100 27 1277 1495 997 26 1373 1X 34 02 98 55 588 22.84 197 26 1373 1X 34 02 98 55 589 21.84 197 26 1373 1X 33 38 100 15 732 16.79 96 197 216 1374 1X 33 04 98 1321 33.41 197 26 1376 1X	1456 UT 36 0.26 113 24.05 93 40 153 3.82 47 1457 UT 37 59.06 113 57.03 60 49 1.87 3.82 47 1458 UT 37 59.06 113 57.37.03 60 49 1.87 3.82 47 1450 UT 37 59.06 113 57.37.03 60 49 1.87 3.82 47 1460 UT 37 53.00 113 26.20 100 46 160 3.35 47 1461 UT 37 44.33 114 02.32 100 82 3.42 4.30 47 1466 UT 37 43.3 111 09 60 21.6 103 4.04 47 1466 UT 37 43.88 113 33.06 27.78 2.12 172 6W 1469 UT 37 36.88 113 0.10 15.1 158 1.52 160	1637WA4543.812226.210326.7991638WA4540.012222.612723.0991640WA4538.7812158.0818072.81842W1640WA4538.7812207.712952.7991643WA4535.9212223.8815231.5191.171642WA4536.610226.418828.7191643WA4536.610952.2006.156.92W1659WY4456.610952.2006.12.18.46.91661WY4420.010405.220026.12.18.46.91662WY4420.010405.220026.12.18.46.91664WY4410.01067.030.901.34.01896197.2162W1664WY4356.1810838.6630.536.391.86.97186.9772.61666WY4348.310821.091429.1996197.21621.61667WY4348.310821.091429.1996197.2169W1673WY4348.310821.091429.1996 <td< td=""><td>Open colspan="2">Open colspan="2"Open colspan="2">Open colspan="2">Open colspan="2"Open colspan="2">Open colspan="2"Open colspan="2"Op</td></td<>	Open colspan="2">Open colspan="2"Open colspan="2">Open colspan="2">Open colspan="2"Open colspan="2">Open colspan="2"Open colspan="2"Op