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ABSTRACT 

When estimating fluid flow behavior using a nonlinear least- 
squares method, appropriate initial guesses of the estimating 
parameters are required to solve the problem because the final 
estimates are often influenced by the initial guesses of the val- 
ues of the estimates. 

An objective analysis method has been developed which is 
independent of the initial guesses for the parameters. Applying 
the method to the analysis of field data obtained from a fluid 
flow monitoring survey, fracture distributions can be evaluated 
which are consistent with drilling results. 

Introduction 

An advanced geophysical technique has been developed for 
dynamic imaging of fluid flow behavior in reservoirs. In this 
method, changes with time of self-potential anomalies at the 
ground surface associated with production or injection opera- 
tions are simultaneously and continuously measured by potential 
electrodes located surrounding a given well. 

Recently, many kinds of soft-computing techniques, which 
are genetic algorithms, neural network, fuzzy reasoning, and so 
on, are applied to various inverse problems to obtain objective 
results. In reservoir evaluations, genetic algorithms are applied 
to reservoir modeling by Sen et al. (1993, to identifying reser- 
voir properties using tracer breakthrough by Guerreiro et al. 
(1998) and Tanaka et al. (1999). 

In this study, we apply a combination of a genetic algorithm 
and a nonlinear least-squares method to the analysis of fluid 
flow behavior to estimate objectively and accurately three-di- 
mensional fracture distributions. 

Analysis Method 

Genetic Algorithm 

Genetic algorithms are stochastic optimization and search 
algorithms based on the mechanics of natural selection and natu- 
ral genetics (Goldberg, 1989). Comparing with a nonlinear 

least-squares method, genetic algorithms have many remark- 
able features: the initial guess for the values of the unknown 
parameters is not required, which can keep results objective; 
they can search simultaneously many estimates in an identical 
search space, which suggests the possibility of parallel comput- 
ing. However, Boschetti (1996) pointed out that genetic 
algorithms are poor optimizers. Therefore, a number of au- 
thors have suggested hybrid techniques, which combines genetic 
algorithms with various search techniques. When the problem- 
specific information or the explicit objective function exists, it 
may be advantageous to consider a hybridized genetic algo- 
rithm (Goldberg, 1989). 

The final estimates obtained from an analysis using genetic 
algorithms are not optimal solutions but discrete values close to 
them. A nonlinear least-squares method is available for improv- 
ing the estimates obtained by genetic algorithms as quasi-optimal 
solutions. Since the convergence properties of the least-squares 
method can be quadratic in the convergence domain containing 
the quasi-optimal solution. Thus, we have developed a new analy- 
sis method to improve genetic algorithms, which has a two-step 
estimating procedure. Tt has been applied to the evaluation of 
fluid flow behavior to estimate fracture distributions. 

Analysis Process 

Figure 1 (overleaf) shows that the flow chart of an analysis 
procedure by the genetic algorithm and the least-squares method. 
In the first step of the procedure, estimates, which are objec- 
tively obtained as quasi-optimal solutions by the genetic 
algorithm, can be expected to be good initial guesses for the 
parameters for the second step. The obtained objective esti- 
mates are expected to be further improved by the nonlinear 
least-squares method to converge to the optimal final estimates 
in the second step. The simplest implementation of a genetic 
algorithm uses three gene operations, which are reproduction, 
crossover, and mutation. 

First, the system is initialized with a population of N indi- 
viduals that contain the binary bit strings for the encoded 
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First Step (Genetic Algorithm) 

2.1. Repmduction 
2.2 cmssover 

Second Step 

I Least-squaresmethod 

Figure 1. Flow chart showing the order of the analysis 
procedure with the genetic al~orithm used to find the 
initial guesses for the second step and the least squares 

method to further improve the estimates. 

unknown parameters to estimate. In genetic algorithms, the 
term “individual” is defined as a set of unknown parameters to 
estimate. The term “population” is defined as the total number 
of parameter sets. Reproduction is the next process after ini- 
tia~ization in which two individuals are selected according to 
their objective values, called fitness or misfit values. The strings 
within an individual with a higher fitness or with a smaller mis- 
fit value has a higher probability of selection to reproduce a 
new population of offsprings. After reproduction, a crossover 
site is selected at random and bits are partially exchanged be- 
tween two strings at the right side of the crossover site (Figure 
2a). In this paper, we used a multi-point crossover in which 
there is crossed over between corresponding parameters of two 
strings. ~u ta t ion  is simply the alteration of bits selected ran- 
domly in the parameter code shown in Figure 2b and carried 
out based on the specified mutation probability. 

00101~011 00101(001 

l00lllool - ~Ool l~?  

(a) Crossover operation 

00101001 - 00101 101 
€r 0 

(b) Mutation operation 

Figure 2. Schematic illustration of the gene operations 
of (a) a crossover and (b) a mutation. 

Figure 3 shows the dis~ibut~on changes of individuals based 
on an optimi~tion process in a three-dimensional search space 
using the nonlinear least-squares method and the genetic algo- 
rithm. The conceptual contour map describes the distribution of 
the residual sum of squares with the both x and y-axes of the two 

(a) least Squares Method 

(b) Genetic Algorithm 

Figure 3. Distribution changes of individuals by (a) a nonlinear 
least-squares method and (b) a genetic algorithm with the 

optimi~ation process in a conceptual search space, which describes 
a contour map of a residual sum of squares. 

unknown parameters as a three-dimensional search space. In the 
nonlinear least-squares method shown in Figure 321, an appropri- 
ate initial guess is given and improved to the global optimum. In 
the genetic algorithm shown in Figure 3b, the distribution of in- 
dividuals becomes denser around the global optimum and the 
local optima t h ~ u g h  the optimi~~tion process. 

Fluid Flow Monitoring Survey for Fracture 
Evaluation 

Self Po ten tial 

Many researchers have studied self-potential anomalies as- 
sociated with pressure, temperature, and chemical potential 
gradients. Self-potential anomalies due to streaming potential 
effects can be expressed based on the theory of irreversible ther- 
modynamics in inhomogeneous media. The cross-coupled 
equations between streaming potential and fluid flow distribu- 
tion due to pressure gradient are defined as (Fitterman, 1979), 

where 23, is the primary flow as the fluid flux vector, S2 the 
secondary flow as the electric current density vector, @ the elec- 
tric potential, P the fluid pressure, and Lij the generalized 
conductivity. More specifically, L,, is the hydraulic permeabil- 
ity k, L22 is the electrical conductivity 6, L2,/L22 is the streaming 
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potential coefficient C, and L12/L11 is the osmotic coefficient. 
The Onsager reciprocal relation requires that LI2=L2,. When 
the effects of the secondary electric potentials on the primary 
flow are small, the primary flow equation can be decoupled and 
the resulting equations are 

k 

P 
v = - -VP 

I = - o ( c v P  + v q  
where v is the flow velocity vector and I the electric current 
vector. 

Electric Potential Function 

The distribution of the streaming current sources associated 
with the fluid flow cause the distribution of the self-potential 
anomaly on the ground surface. In this study, the distribution of 
these sources are assumed to be superposed on some simple- 
shaped electric current sources for the estimation. The 
distribution of the electric current sources obtained from the 
inverse analysis can be expected to suggest the distribution of 
the fluid flow. 

Considering the homogeneous half-space as the ground, the 
electric potential on the ground surface at (x, y, 0) due to a bur- 
ied point source of electric current located at (xp, yp, zp) shown 
in Figure 4a is defined as 

V =  

2n4x - X p > ,  + ( y  - y p y  + 2; 
( 3 )  

P 
I .  

( X P 9 Y  P J P )  

(a) Point source 

P A  

Figure 4. 

(b) Line source 

Schematic diagrams of (a) a buried point source and 
(b) a buried line source of electric current. 

where p is the resistivity of the ground and 1 the strength of the 
electric current source on condition that the potential is assumed 
to be zero at an infinite distance from the electric current source. 
The potential caused by a buried line source of electric current 
can be derived by a simple integration of equation ( 3 ) along 
the line source. When the line source is assumed to extend from 
point A (xA, yA, zA) to point B (xg, yB, zB) shown in Figure 4b, 
the electric potential at the point (x, y, 0) on the ground surface 
is given by 

Y = laI2 

Implementation of the Genetic Algorithm 

We use a binary code to encode the value of each estimating 
parameter into the gene with discrete equal intervals between 
the maximum and minimum values. The value b.r, which is the 
part of the binary bit strings of length 1 and the integer value for 
the each parameter, is decoded to obtain the value of parameter 
according to the following equation 

L -1 

where x describes each parameter, such as the strength of the 
electric source of current I, and its coordinates (x, y, z). The 
subscripts mux and min indicate the maximum and minimum 
values of each parameter, respectively. 

In the reproduction process, the most basic selection method 
uses the ratio of the fitness value for an individual to the sum of 
them. To reproduce a new population of offsprings, two indi- 
viduals are selected according to the probability Psi 

fitness, 

C fitnessj 
psi = 

j = l  

( 7 )  
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In this procedure, the correlation factor between measured 
and calculated values is used as the fitness value as follows: 

n ( 8 )  fitness = , i = l  

\ i=I i= I 

where n is the number of potential values, V,ni and Vci are the 
measured and calculated electric potential anomaly at the i-th 
station, respectively. The bar denotes the average for the each 
potential. The mutation probability should be kept low, but 
nonzero, to maintain the diversity of the population. Therefore, 
in this study, the mutation probability is assumed to be 0.1. 

Application of the Method to Field Data 

To verify the usefulness of the genetic algorithm to estimate 
fluid flow behavior and fracture distribution, we analyzed the 
field data reported in Ushijima et al. (1999). A lost circulation 
zone was encountered during the drilling of an exploratory bore- 
hole in the Hatchobaru geothermal area, Japan. Sidetracks that 
were drilled twice to avoid the lost circulation zone. Unfortu- 
nately, these sidetracks were unsuccessful. Later, a fluid flow 
monitoring survey was carried out to characterize the geometry 
of the lost circulation zone and to determine the direction of the 
next sidetrack. 

Potential electrodes P,s were placed around the well to mea- 
sure the changes with time of the self-potential anomalies at the 

C o m p u t e r  

S t r e a m i n r c  urren t Sources  
Figure 5. Electrode configurations of the fluid flow monitoring system 

ground surface, as shown in Figure 5. Another potential elec- 
trode P2 is located far away from the well, as in  the 
mise-h-la-masse method. 

Self-potential anomalies associated with the fluid flow in 
fractures can be continuously monitored by a PC-controlled data 
acquisition system before and during injection operations at the 
target well. Step-wise increases in injection water are expected 
to be reflected by proportional increases in the self-potential 
anomaly. A typical measured distribution change in the electric 
potentials is shown in Figure 6 when the injection flow rate is at 
its maximum, assuming that the electric potentials before the 
start of the injection operation are back ground values. 

There are sources of electric current wherever there are ex- 
ternal or induced fluid flow sources, or wherever there are 
gradients of the cross-coupling coefficient parallel to the fluid 
flow (Sill, 1983). In the analysis of the field data, one negative 
point source of electric current can be located at the feed zone 
in depth about 160m of the well, and some positive line sources 
of electric current can be assumed based on the principle of the 
electrical natural. Then, the unknown parameters to be esti- 
mated in the analysis are the strength of the negative point source 
at the feed zone and the strengths and the locations of the line 
sources. 

Figure 7 shows that the distribution of the self-potential 
anomaly calculated from the estimated electric current sources 
using the method of analysis described here. A close agree- 
ment between measured (Figure 6)and calculated self-potential 
anomalies (Figure 7) can be obtained. 

Considering a variety of cross-coupling coefficients of natu- 
ral fractures, the electric current sources can expected to occur 
along the fluid flow in fractures. Thus, estimated locations of 
the line sources of electric current indicate the distributions of 
fluid flow and fractures. 

ASP[m VI 

Figure 6. Distribution of the self-potential anomaly measured at 
30 stations located around the well H28 when the injection rate 

is  at its maximum. Open circle H28 and thick lines S ,  and S, 
indicate the target well and the two sidetracks, respectively. 
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Figure 7. Distribution of the calculated self-potential 
anomaly resulting from the analysis. 

Estimated strikes and dips of the fracture from the locations 
of the line sources and the drilling results are listed in Table 1. 
The estimated strike of N30"W from the analysis agrees with 
that of N39"W from the drilling results. While the estimated 
dip of 21"SW is one third of that of 64"SW from the drilling 
results. This is because the survey area, 50m x 50m, is so small 
that the depth resolution of the measured data may be lowered. 

Table 1. Estimated strikes and dips from the analysis and the 
d ri I I i ng resu I ts. 

I I Strike I M I 

Conclusion 

A new analysis method for the inverse problem of fracture 
evaluation using a genetic algorithm and a least-squares method 
has been developed. The results of field data analysis described 
here show the effectiveness of this new inverse method to char- 
acterize fractures. It is also concluded that the objective solution 
of the inverse analysis can be obtained independent of the skill 
of the person who analyzes the inverse problems. Since no 
initial guess for the parameter is required by the new analysis 
method. 
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