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ABSTRACT 
The classical continuum models of flow and heat transfer in 

fractured and/or porous media are discussed. In simplest exam- 
ples the internal contradictions of these models are shown for 
the case of steady process. It is stressed that classical linear ex- 
change terms can give errors even in hlly steady conditions, 
not only in transient processes as it was considered previously. 
The reasons for such con t r a~c t io~s  are analyzed. The ways of 
contradictions’ removal in process of models’ formulation 
through spatial averaging method are discussed. 

Introduction 
Continuum models of transfer in heterogeneous media are 

widely used as well as structural models (Pashkevich, 1996). 
For continuum models the closure problem for determination 
of interphase flows still remains. The objective of the work is 
demonstration of internal contradiction of classical models of 
transfer in fiactured and porous media, which use quasi-steady 
linear presentation of exchange flows. The examples of steady 
heat transfer and flow in porous ( ~ a c ~ e d )  and fractured po- 
rous reservoirs are presented. 

After con ti nu^ conception the natural h e t e r o g e ~ e o ~  
rock-fluid medium i s  substituted for conditional interpenetrat- 
ing media. Every point of medium is described by two sets of 
macro-scale physical values and properties, corresponded to 
each phase. The macro-scale values are an average of micro- 
scale values. Usually the macro values and macro equations are 
obtained using a spatial (more often volume) averaging 
method. The classical continuum model of convective heat 
transfer in porous (fractured) media is formulated as follows: 

(I+)Cra t 
+cfa t fia z + cfv vt -4;l;v t t+ 4 = 0, 

T - (l+)Ar*V t - qt = O 
(1) 

where 0 is porosity; Cr and Cf are volume specific heats of rock 
and fluid, and tf are temperatures averaged over each phase’s 
(rock and fluid) part in represen~tive el em^^ volume 
(REV); v is Darcy’s velocity, which is determined in IUEV, 

h* is effective thermal conductivi~, qt is interphase heat flow. 
At frrst, system (1) was suggested by Rubinstein (for purely 

conductive process in 1948, and for convective heat transfer in 
1972) and were later named “macroscale interpenetrating me- 
dia” (MIM) model. The heat flow qt was considered propor- 
tional to specific swrface rock-fluid contact (a rf) and difference 
of fluid and rock temperatures: 

qt=a i fa  ( t f - t r ) ,  (2) 

where a is interphase heat exchange coefficient. At first linear 
expression for heat flow qt in form similar to (2) were suggested . 

by Anzelius, 1926 and Schumam, 1929 for one-dimensional 
convective heat transfer case. Usually linear character of (2) is 
advocated as quasi-steady approximation near local thermal 
equilibrium (Nikolaevskii, 1984, Nigmatulin, 1987, Whitaker, 
1977). Discussion of problem arising in proving de te~nat ion  
of expression for exchange flow (2), as well as its adequacy to 
natural processes in g e o ~ e ~ a l  reservoirs is presented in 
Pashkevich, 1996. 

The MIM model (equat io~ (I), (2)) is being widely used for 
modelling of heat transfer in permeable media, including in 
geothermal reservoirs and systems (Cheng, 1977, Dyadkin, 
1989, Tsherban et al., 1986). 

Analogous continuum model for processes of flow in fiat- 
tured porous media was at first formulated by Barenblatt and 
Zheltov (1960, see also Barenblatt et al., 1960) and by Warren 
and Root, 1963. Their formulations for slightly compressible 
fluid under specific conditions were named dual porosity 
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model. The general Barenblatt-Zheltov model (also named 
dual p e ~ e a b i l i ~  model) is formulated as follows: 

fie4 Pi# .T - Qdcr)a“P fi - q p  = 0 
kacmaa  ma 18 - &JcL>V p ma + q p  = 0, (3) 

where exchange flow between fractures and porous matrix qp 
was pos~lated in form: 

q p =  (qcc ) (Pm-Pf i ) ,  (4) 

p is pressure, 4 is porosity, c is compressibility, k is permeabil- 
ity, p is fluid viscosity, subscripts “fi ” and “ma ” mean values 
which refer accordingly to fracture and porous matrix media, 
ap is dimensionless coefficient. The pressures pfr and Pma in (3) 
and (4) are pressures averaged over each phase’s (fractures and 
porous matrix) part in REV. 

The linear character of matrix-fracture exchange flow qp in 
form of (4) is considered quasi-steady approximation, as well 
as in above heat transfer model. 

The dual porosity model remains widely used in reservoir 
modelling and is currently modified. Modifications of the 
model mainly .are concluded in generalization of matrix- 
fracture flow % to get over the quasi-steady restriction (short 
recent review can be found in Shook, 1996 and in Suares et al., 
1996). Recent example of such attempts is a work of Shook, 
1996. From the other hand, Suares et. al., 1996 introduced the 
triple porosity model (with additional third open fracture’s or 
fault’s phase), for accounting of complex spatial structure of 
’reservoir (here the problem of d e t e ~ ~ a t i o n  of exchange flows 
remains). At ’last, the MMC (Multiple Mteracting Continua) 
method of Pruess and Narasimhan, 1985 and its improving 
(Pruess, 1990) is another (semi-numerical) extension of dual 
porosity model. ”he MWC method is considered fiee from 
quasi-steady restriction (Shook, 1 996). Nevertheless, after 
Pruess, 1990, for simple case of two continua (fiactures and 
matrix), “the MJNC method reduces to the double-porosity ap- 
proach ”. 

Below it is demonstrated on the simple examples, that ex- 
pression of interaction’s terms qt and qp as differences of 
phase’s temperatures and pressures (equations (2) and (4)) can 
lead to errors even in full-steady cases. Therefore classical con- 
tinuum models for flow and heat transfer are restricted by not 
only quasi-steady assumption, but in a more general sense. 

Heat Transfer In ~ r ~ c t u r e ~  Or Porous 
Reservoirs 

Consider a conditional reservoir consisted of vertical equi- 
distant fractures filled with solid materials with different ther- 
mal conductivi~ hr , & and thickness 6. (see Figure. 2). 

Let reservoir be in steady state, so that heat flux Q i s  ’ nor- 
mal to fracture's plane direction x (i.e., in horizontal direction), 
be constant and heat flux in other directions be zero. Then the 
local (micro scale) t ’ t e ~ p e r a ~ e  dis~bution for both phases 
will be linear in direction x. The volume averaged temperatures 
t r  and tf will be equal temperatures averaged over horizontal 

cross section of fractures. Then averaged temperatures’ distri- 
butions will be linear too and 

dt&ix=consh, dt,/dx=con$; 
dzt, = d?ddxz = 0, dzc= d%,/dx2 = 0. (5 )  

At the same time, from the equations (1) and (2) for consid- 
ered steady state (also FO) we get: 

(6) 
Vt r=d~~2=(a ,cr / ( ( l -~ ) l r ’ ) ) ( t  r -  h)*O 
dz t = d+ddx2 = (a , a/(@A;)) ( t , - t r )  f 0, 

since t r # t f , so far as the heat transfer occurs in direction x. 
Thus equations (6) give incorrect expression for laplacian of 
phase temperatures, which turns into correct equations ( 5 )  only 
in case of thermal equilibrium, when t I = t f. 

Therefore in above considered case the classical con ti nu^ 
model of heat transfer in porous (fractured) media (equations 
(1) and (2)) gives wittingly wrong result for phase tempera- 
ture’s distribution. 

Flow tn Fractured Porous Reservoirs 
Now consider a conditional reservoir consisted of intermit- 

ted vertical porous blocks (with’thickness 6ma and permeability 
kma) and hctures (with a p e ~ ~ e s  8fr and p e ~ e a b i l i ~  kf ), as it 
shown in Figure. 2. 

Let reservoir be in steady state, so that flow rate Qp in hori- 
zontal direction, be constant and in other directions be zero. 
Then the local (micro scale) p’ pressure dis~bution in blocks 
and in fiactures will be linear in direction x. The volume aver- 
aged pressures Pma and pfr will be equal pressures averaged over 
horizontal cross section of blocks and fractures. Then averaged 
pressures’ distributions will be linear too and: 

(7) dp&h=const& dpmJdFCOnS~a; 
d“p, = d$&xz = 0, dzp,, = d$Jdx2 = 0. 

At the same time, from the equations (3) and (4) for consid- 
ered steady state we get: 

d“~fi= d2Pddx2=(a&X~ p maI+ 0 
%ma= d2PmJdx2 =(a&J( P me - p * 0, 

since p fr # p ma, SO far as the flow occurs in direction x. Thus 
equations (8) give incorrect expression for laplacian of phase 
pressures, which turns into correct equations (7) only in case of 
hydrostatic equilibrium, when PfrTma. 

Therefore in above considered case the classical continuum 
model of flow in fiactured porous media (equations (3) and (4)) 
gives incorrect result for phase pressure’s distribution. 

The Reason For Contradiction and Possible 
Ways of its Removal 

The reason for the contradictions in discussed examples is 
concluded in representation of interphase flows qt and qp as ex- 
pressions proportional to the difference of averaged phases’ 
values ( t e ~ p e ~ ~ e s  and press~es)  in forms of (2) and (4). 

In terms of volume averaging method the interphase flows, 
entranced in equations (1) and (3), represent the surface inte- 
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6 s  x 
Figure 1. Temperature distribution in system of parallel fractures. 

grals of micro-scale interphase flows over surface of interface. 
That is simple to show on example of heat transfer case. For 
constant thermal properties of fluid and rock and constant Dar- 
cy's velocity, the averaged equations for temperatures are (see, 
e.g., Whitaker, 1977): 

where is microscale temperature, V is averaging volume, the 
integration goes over surface of rock-fluid interface A in vol- 
ume V (REV), nd is outward to phase r unit vector on the sur- 
face A. 

The first integrals in (9) named thermal tortuosity, are usu- 
ally included in the effective thermal conductivities (see equa- 
tions (1)). The last term in equations (9), is the microscale inter- 
phase heat flow, integrated over surface of rock-fluid interface 
in averaging volume, and denoted qt (see (1)). 

As it shown in previous section, the use of standard expres- 
sion for macroscale interphase heat flow qt in form of (2) leads 
to error in simple case of heat transfer in layered system (Figure 
1). Nevertheless, in the same case, general equations (9) lead to 
correct result. Indeed, for the case (see Figure. 1) we have: 

Vl G' ~zfdA=o, Vl tf' n,dA=O. (10) 
With the use of corollary of Slattery-Whitaker averaging 

theorem: V0 = - (1N)f nd dA, and use of Fourier law: Qt= - 
h,Vt, we can write: 

(1 1) 

since heat flux Qt is constant and porosity is constant too in the 
case. Then in the our steady case with r-0, substitution of (10) 
and (1 1) in equations (9) gives: 

(1fV)IlrVG' r~fdA= QtV@ =o, 
(IN) !AfV&' n,dA= - QtV@ =0, 

P' ' 

X 
Figure 2. Pressure distribution in system of parallel porous blocks 

and fractures. 

Vtr= 0, vt f =  0. (12) 
The equations (1 2) are correct and coincide to equations (S), 

obtained in the first of the previous sections. 
Therefore, the general averaged equations (9) give correct 

results in considered case, but specific equations (1) and (2), 
derived from (9), are not. The reason is the expression of inter- 
phase heat flow in form of (2). As it above demonstrated, al- 
though general heat flux Qt occurs in the system and is not 
equal zero, the integrated heat flow over fluid-rock interface 
surface in the averaging volume fkfvt; nfr d~ turns to zero for 
the considered case. Then the interphase heat flow qt which as- 
sociated with this integral, can not be formulated as difference 
of the fluid and rock temperatures (equations (2)). 

The considered example confirms the power and accuracy 
of the general volume averaging method in formulation of con- 
tinuum models of transfer in multiphase systems, including in 
the geothermal reservoirs. The considered contradictions arise 
from weakness of present closure scheme for interphase flow 
determination. 

The contradiction can be avoided by appropriate choice of 
forin of interphase .flow, for example by introduction of third 
macrokcale phase-temperature, averaged over surface of bulk 
phase's inteCface (fluid-rock interfaces). Such approach de- 
mands formulation of the additional equation for the surface 
temperature. It is a subject for further work. 

The same illustration and inferences can be made for the 
process of flow in a fractured porous reservoir, considered in 
previous section. 

Conclusion 
The classical continuum models of heat transfer in porous 

(fractured) media and of flow in fractured porous media (dou- 
ble porosity model) may give incorrect results in fully steady 
conditions (not only in transient case, as it was well known pre- 
viously). Therefore in geothermal reservoir modelling such 
models (approach) can not give adequate description of natural 
processes in general case. The reasons for internal contradic- 
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tions of continuum models conclude in linear expression of in- 
terphase flow (fluid-rock, fractures-porous matrix) through dif- 
ference of phase’s pressures and temperatures. The contradic- 
tions can be avoided by appropriate choice of form of inter- 
phase flow, for example by introduction of third macro-scale 
phase-temperature or pressure, averaged over surface of bulk 
phase’s interface (fluid-rock and fixtures-porous matrix inter- 
faces). 

The described features of classical continuum models of 
transfer in permeable medium must be included in design of 
geothermal reservoir models. 
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