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ABSTRACT 
In order to discuss the method for estimating the geometric 

characteristics of geothermal reservoir cracks, a theoretical 
study is performed on the dynamic response of the fluid inside a 
reservoir crack in a rock mass subjected to a dynamic excitation 
due to propagation of an elastic wave. As representative models 
of reservoir cracks, a penny shaped crack and a two-dimen- 
sional crack which are connected to a borehole are considered. 
It is found that the resonance frequency of the fluid motion is 
dependent on the crack size, the fluid’s viscosity and the per- 
meability of the formation. The intensity of the resonance is de- 
pendent on the fluid’s viscosity when the size, the aperture and 
the permeability are fixed. It is also found that, at a value of the 
fluid’s viscosity, the resonance of fluid pressure becomes 
strongest. The optimum value of the fluid’s viscosity is found 
to be almost perfectly determined by the permeability of the 
formation. Furthermore, it is revealed that, if the fluid’s viscos- 
ity is fixed to be the optimum value, the resonance frequency is 
almost independent of the permeability and aperture, but is de- 
pendent on the size of crack. Inversely speaking, this implies 
that the size of the reservoir crack can be estimated from the 
resonance frequency, if the fluid with the above mentioned op- 
timum value of viscosity is employed for hydraulic fiacturing. 

Introduction 
In geothermal heat extraction using artificial reservoir 

cracks such as HDR (Duchane, 1991)and HWR (Takahashi and 
Hashida, 1992), one of the key technologies is the characteriza- 
tion of reservoir cracks which are created by hydraulic fractur- 
ing; it is highly desirable to estimate the basic geometrical char- 
acteristics, i.e. size, aperture and degree of contract between 
two crack surfaces, as well as mechanical characteristics, Le. 
interfacial stifmess induced by the contact and flow transmis- 
sivity of the reservoir crack itself. For these purposes, the so- 
called AE/MS methods are most promising. Thus, the investi- 
gation of dynamic response of a fluid-filled crack is ciucial. So 

far, the dynamic response of a fluid-filled crack has been stud- 
ied to clarifL the source mechanism of volcanic earthquakes, 
the seismic source of which is considered to be a crack filled 
with molten magma (Chouet, 1986, 1988; Chouet and Julian, 
1985; Ferrazzini and Aki, 1987; Honda and Yomogida, 1993). 
With regard to the advanced geothermal energy extraction, Fer- 
razzini et al. (1990), by using a three-dimensional fluid-filled 
crack model, successfidly attempted to estimate the size of a 
reservoir crack created by hydraulic fracturing during the US 
HDR project at Fenton Hill, New Mexico. Hayashi and Sat0 
(1992) studied the guided wave in a liquid layer sandwiched 
between two elastic semi-infinite half spaces which were par- 
tially in contact to each other across the layer, following the ap- 
proach employed by Ferrazzini and Aki (1 987). Nagano et al. 
(1 995) measured the guided waves in the reservoir crack in the 
Higashi-hachimantai HDR model field, where the reservoir 
crack was connected to two boreholes. 

They set an airgun at one of the intersection points between 
the crack and the boreholes and set a triaxial seismic dector at 
the other point of intersection. Hayashi et al. (1995) also stud- 
ied the dynamic response of a two-dimensional very thin crack 
which was filled with water and found that strong standing 
waves with wave lengths being equal to L, 2L/3,L/2 . . .existed, 
where L was the length of the two-dimensional crack. Recently, 
Dvorkin et al. (1992) indicated that the following three factors 
had significant influence on the dynamic response. The three 
factors are (1) the spatial variation of a crack aperture, (2) filtra- 
tion fiom the crack into the surrounding formation and (3) fil- 
tration inside the crack. They studied the dynamic response of 
fluid in a two-dimensional crack embedded in a rigid body, em- 
phasizing the effects of the three factors. 

In the present paper, we study the dynamic response of a 
fluid inside a three-dimensional crack in a rigid medium. The 
fluid is subjected to normal harmonic oscillations of the crack 
surfaces that are permeable and allow the fluid to filtrate into 
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the surrounding formations. As a representative three- 
dimensional model of reservoir cracks, we employ a penny 
shaped crack which is connected to a borehole at its center. The 
basic differential equation for the pressure of the fluid is de- 
rived from the Navier-Stokes equation and the equation ofcon- 
tinuity, following the approach employed by Dvorkin et al. 
(1990). The basic differential equation is solved by using the 
so-called shooting method with the aid of the Runge-Kutta-Gill 
integration scheme. Then, we discuss the basic characteristics 
of the dynamic response of the fluid, emphasizing the effects of 
main factors, such as fluid viscosity, permeability and porosity 
of the surrounding formation, the crack size and crack aperture 
and so on, and examine the feasibility of estimating the crack 
geometry by using the characteristic of the dynamic response. 
Finally, we also discuss the case of a two-dimensional crack for 
comparison. The basic characteristics of the dynamic response 
of the case of a two-dimensional crack were studied in detail by 
Dvorkin et. Al. (1 992). In the present paper,’we discuss the case 
of a two-dimensional crack from’the view point of the estima- 
tion of the reservoir crack characteristics. 

Cover n i ng Equation 
We examine the dynamic response of the compressible vis- 

cous fluid inside a penny shaped crack embedded in a forma- 
tion. A borehole is crossing the crack perpendicularly at the 
center of the crack. Crack walls are permeable, allowing the 
fluid to filtrate into the surrounding formation. The fluid flow is 
induced by normal harmonic oscillations of the crack walls. Let 
us introduce a cylindrical coordinate system (r,0, z) at the cen- 
ter of the penny shaped crack (Figure 1). The information is as- 
sumed to be rigid. In the following, the governing equation for 
the three-dimensional axisymmetric problem is derived, fol- 
lowing Dvorkin et a1 (1990) who treated the two-dimensional 
problem. 

I 

Figure 1. Viscous compressible fluid is a penny shaped crack: u, and u, 
are fluid velocity components and w is fluid velocity of filtration through the 
walls. 

The movement of fluid is axisymmetric. Let us denote the 
fluid velocity components in the r and z-directions as ur and u,, 
respectively. Furthermore, w is a fluid velocity of fluid filtra- 

tion into the surrounding formation. We assume that the crack 
is symmetric with respect to the z-plane. The aperture of the 
crack 26 is a function of the spatial coordinate r and time t simi- 
larly to Dvorkin et al. (1 990): 

(1) 
ii(q t )  = a(.) -1 U O ( ~ ) E  exp(iwt), 

where a(r) is zero-frequency aperture of the crack, o in the an- 
gular frequency of oscillation of the walls, and the product a, 
( r ) ~  gives the amplitude of this oscillation. The amplitude is 
small compared to the aperture of the crack: 

(2) 
&)E e: 4r). 

The compressibility of the fluid in the crack can be de- 
scribed by a linear relation 

dP = co2dp, 
(3) 

where P is the pressure of the fluid,p is its density, and co is the 
fluid acoustic velocity. Density variation dp in Equation 3 is 
much smaller than its reference “undisturbed” value po: 

(4) 
dP ex Po. 

We assume that the pressure is constant across the crack and 
therefore the density of the fluid independent of the z-coord- 
inate. 

The equation of mass conservation in the crack is 

The integration of Equation 5 in the z-direction from 0 to 6 
gives 

Due to the syinmetry of the fluid flow relative-to the z-plane, 

At the upper wall of the crack 

This filtration is modeled as a one-dimensional process in 
the z- direction. The one-dimensional filtration equation is 
solved by assuming that the crack is embedded in an infinite 
porous space. The boundary conditions are the condition of 
pressure continuity at the crack walls and the condition that 
fluid pressure in the formation vanishes as z + 00. The details of 
this solution are given in Dvorkin et al. (1 990). The resulting 
formula relates w to P is given by 

(9) 
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where M=p&co / (00 p) is hydraulic diffusivity coefficient, p 
is fluid’s viscosity, is permeability of the surrounding forma- 
tion, and 0 0  is its porosity. 

Assuming that all h c t i o n s  are harmonically time depend- 
ent: 

Substituting Equations (1) and (9) into Equation (8), we find 

We derive the equation of motion from the Navier-Stokes 
equation defined in the cylindrical coordinate system. Let us 
assume that the zero-frequency aperture a is almost constant re- 
gardless of r; then the flow is approximately radial, and we can 
neglect ur (au, lar) and #u, /a?. Hence, the equation of motion 
becomes 

At any station r, with local pressure aP/&, the solution of 
Equation ( 12) for (approx~ately) p~allel-plate radial flow is 
given by (Mavko and N u ,  1979) 

Ilt =: --- (13) 
where 

n = p+ 2. 1 

(14) 
P ” _  

Substituting Equation (1 3) into Equation (6), and using Equa- 
tions (7), (8), (9) and (1 l), we arrive at the following differen- 
tial equation for the h c t i o n  P&): 

Here, we have set 5 s a in view of Equation (2). 

Dynamic Response of Fluid ’ 
We n ~ e ~ c a l l y  solve Equation (1 5 )  by using the so-called 

shooting method with the aid of the Runge-Kutta-Gill integra- 
tion scheme under the following boundary conditions: 

dP0 - = o  at r =  It. d r  

where Ro is the radius of the borehole and R is the radius of the 
crack. The pressure averaged over the area of the crack is given 
bY 

P** = ; ~~ Po (r) ~~~~, 
(18) 

where S is the area of the crack. In the n ~ e ~ c a l  c ~ c ~ a t i o n ,  
the radius of borehole Ro is set to be 10cm. Regarding the crack 
geometry, the radius of the crack li is set to be lorn, 20m and 
30m and the aperture of crack2a is set to be 2mm, 5mm and 
10mm. In the following, we discuss the dependency of the av- 
eraged pressure amplitude on the permeability of the formation 
h, the viscosity of fluid p and the porosity of the formation so. 

Figure 2 is an example of the plots of the normalized average 
pressure PN, defined by ~ J ( p c ~ a ~ / a ,  versus frequency f = 
d 2 n ,  demonstrating the effect of b o n  the resonance frequency 
and PN, where R =lorn, 2a=lOmm, p =lcP ands ~ 3 % .  Figure 
3 shows the variation of P N  with respect to the viscosity and fie- 
quency for the case of R = 1 Om, 2a = 1 Omm, where the perme- 
ability is fixed to be b = 0 . ~ 9 m d ~ c y  and the porosity of the for- 
mation if fixed to be 0 0=3%. It is seen from Figure 3 that the 
resonance of fluid pressure becomes strongest at a value of the 
viscosity. In the following this optimum value of the viscosity 
is denoted as pM. Figures 4(a) and @) shows also the variation 
of PN with respect to viscosity and ftequency for the cases of R 
=20m, 2a =lOmm and R=lOm, 2a =5mm, where b =0.09darcy 
and 0 0=3%. By comparing Figure 4 with Figure 3, we can con- 
clude that the optimum viscosity p M  is almost independent of 

0 5 10 15 20 25 30 

I, 132 
Figure 2. An example of the variation of the normalized average pres- 

sure PN with respect to the excitation frequency f ( R =1 Om, 2a = I  Omm, p 
= 1 CP). 
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Figure 3. Variation of the normalized average 
pressure PN with respect to the fluid's viscosity p and 
frequency f &, =O.ogmdarcy, plO =3%, R =lorn, 2a 
=10mm). 

(a) R=ZOm, 2~=1~1ntn.  

(b) R= IOm, 2n=51nin. 

Figure 4. Variation of the normaliz~ average 
pressure PN with respect to the fluid's viscosity p and 
frequency f (k0 = 0.09mdarcy, 0, =3%). 

2(3 , 

1 

1,. I 1 10 

ko, mdurcy 

Figure 5. Variation of the optimum viscosity of 
fluidpM with respect to the permeability of the forma- 
tion ko. This relationship is independent of R, a, and 
00. 

the radius of the crack R and the aperture of the crack a. This 
means that p M  is almost pedectly determinedby the permeabil- 
ity of the formation b, if 0 0  is fixed. The relationship between 
p M  and is given in Figure 5. This relatio~hip is independent 
of the crack geometry, i.e. R and a, as discussed just above. 
Thus, regardless of R and a, we can expect to get the strongest 
PiElMS signal during hy~aul ic  ~ a c t ~ n g  by selecting the vis- 
cosity of fluid to be p M  which is determined by giving the per- 
meability of the formation k0 8s shown in Figure 5.  We have 
checked the effect of the porosity of the formation so and have 
found that only the amplitude of PN is dependent on the poros- 
ity, although the details are not presented for the sake of brev- 
ity. Thus the discussions stated above hold regardless of OO. In 
the following, 0 0  is fixed to be 3%. 

Practically, it is frequently observed that the aperture of the 
crack mouth at the borehole wall is fairly Iarge due to the col- 
lapse of the borehole wall. We have examined the effect of the 
collapse by calculating with various shapes of the crack open- 
ing in the very vicinity of the crack mouth. Resonance fie- 
quency of the fluid pressure and intensity of the resonance pres- 
sure change an i n s i ~ i ~ c a n t  amount. Thus, we can neglect the 
effect of the collapse. 

and p on the reso- 
nance frequency f, . By c o m p ~ n g  Figures 3 and 4(b), it is seen 
that fr. is almost independent of a. But, f, is dependent on R as 
can be seen by comparing Figures 3 and 4(a). And f, is also de- 
pendent on p as can be seen fkom Figures 3 and 4. It is readily 
understood f, is dependent on k0 as shown in Figure 2. Thus, the 
effect of the factors R, b and p on f, are very complex. How- 
ever, if we fix p to be pM, the situation becomes much clearer. 
Figure 6 shows the variation of fr with respect to k0 when p is 
fixed to be p ~ .  As can be seen from Figure 6, f, is ~ d ~ p e n d e n t  
of k0 and determined by R only, if p is fixed to be p Figure 7, 
reproduced fiom Figure 6, shows the relationship between R 
and fr. Thus, we can estimate R from f ,. Furthermore, we can 
construct the plots of PNR, defined by ~Poy~/(pc~ao&/R), versus 
for various values of a. An example of such plots is shown in 

Now, let us consider the effects of a, R, 
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2os 

I H=30m t 1 
1 10 

0 
0.1 

k,, mdarcy 

Figure 6. Variation of the resonance frequency fr 
with respect to the permeability of the formation ko (cc 
=pJ This relationship is independent of a. 

10 20 30 

I t ,  m 

Figure 7. Variation of the resonance frequency f, 
with respect to the radius of the crack R at the opti- 
mum viscosity of fluid p =I.(,. 

0.1 1 10 

k,, mdarcy 

Figure 8. Variation of the maximum of the nor- 
malized average pressure fNR (51 PaYI/(pc,,~a~R) with 
respect to the permeability of the formation (cr = p, , 
R =lOm,0, = 3%). 

Figure 8 where R is fixed to be 1Om. If R is determined as dis- 
cussed above, then it is not impossible to estimate the aperture 
of the crack a fiom the intensity of the resonance of the aver- 
aged pressure PNR by using the relationship between the PNR 
and for the determined value of R, such as Figure 8. How- 
ever, there remain problems of how to measure the amplitude 
of the excitation input and how to measure the averaged pres- 
sure in the crack. 

Two-Dimensional Cracks 
The governing equation for the case of a two-dimensional 

crack is given as follows (Dvorkin et al. (1990): 

where x is the distance from the center of the crack measured 
along the crack. We have analyzed the case of the two- 
dimensional crack by using this equation similarly to the case 
of a three-dimensional penny shaped crack. 

The results are shi lar  to those of a three-dimensional penny 
shaped crack. Figure 9 shows the variation of the optimum vis- 
cosity pM with respect to the permeability of the formation &. 
This relationship between p~ and is independent of the 
length of crack& the aperture of the crack a and the porosity of 
formation 00. There are two lines in the region where the per- 
meability of the formation & is larger than about Smdarcy. 

These two lines correspond to the two peaks of the normal- 
ized average pressure PN. These two values of the two peaks are 
almost equal to each other and, fiuthennore, PN in the region 
between the two lines is almost equal to the value off” at the 
two peaks, although the value of PN outside the two lines is 
smaller than that in the region between the two lines. Thus, for 

larger than about Smdarcy, any value of the fluid’s viscosity 
p between the two lines can be regarded as pM. 

Figure 10 shows an example of the plots of the resonance 
fiequency of h e  fluid motionf, versus in the case that p is 
fixed to be the value on the upper line in Figure 9, where the 
length of the crack L =lo, 20 and 30m, 2 u = lOmm and =3%. 
Figure 10 shows that if we chose the fluid with the appropriate 
value of the viscosity, we can estimate the length of the crack L 
fiom fr, similar to the case of a three-dimensional penny shaped 
crack. Furthermore, if is determined as discussed above, then 
it is possible to estimate the aperture of the crack L fiom the re- 
lationship between the intensity of the resonance of the normal- 
ized average pressure PNL, defined by IP,,llpc~uo EIL), and &. 
Figure 11 is an example of the relationship, when the fluid’s 
viscosity p is fixed to be the appropriate value selected by using 
Figure 9, so as to compatible with 16. However, there remain 
problems of how to measure the amplitude of the excitation in- 
put and how to measure the averaged pressure in the crack. 
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40 

0 10 

- L =  10m 

k,, mdorcy 
Figure9. Variation of the optimum viscosity of 

fluid pM with respect to the permeability of the forma- 
tion k, for a two-dimensional crack. The value of the 
fluid’s viscosity in the region between the two lines 
can be regarded as optimum viscosity. 

c 

0.1 1 10 

k,, mdtircy 

Figure 10. Variation of the resonance frequency 
f i  with respect to the permeability of the formation k, 
for a two-dimensional crack (cr = pM). 

- 

&,, , mdorcy 

Figure 11. Variation of the maximum of the nor- 
malized average pressure PNL (= I P, I/pc,2ao-dL )) with 
respect to the permeability of the formation ko for a 
two-dimensional crack (cr = pMMI L =lorn, go = 3%). 

Conclusions 
The dynamic response of the compressible viscous fluid in- 

side a three-dimensional penny shaped crack embedded in a 
rigid body was examined assuming that the flow was axisym- 
metric in the penny shaped crack. The case of a two- 
dimensional crack was discussed for comparison. 

In both of the two cases, it was found that there exists an op 
timum value of viscosity of fluid that maximizes the intensity 
of the resonance of the fluid pressure. The optimum value of 
fluid viscosity is almost perfectly determined by the permeabil- 
ity of the formation. This means that we can expect to get the 
strongest AEMS signal during hydraulic fracturing by select- 
ing the value of fluid viscosity to be the optimum value which is 
determined by the permeability of the formation. 

Furthermore, when the fluid viscosity is fixed to be opti- 
mum, the resonance frequency of the fluid pressure is almost 
determined by the radius (length) of the crack. So we can esti- 
mate the radius (length) of the crack from the resonance fie- 
quency of the fluid pressure. And if the radius (length) of the 
crack is determined, it might be possible to estimate the aper- 
ture of the crack by using the relationship between the normal- 
ized average pressure and the permeability of the formation. 

. 
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