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ABSTRACT 

The space filling fractal dimension and geometric features of 
outcropping fractures in tlie Tamagawa Welded Tuffs in tlie Kakkoiida 
geotliernial area, Northeast Japan, and artificial 2D network niodels have been 
invcstigated. Tlie fracture space filling fractal dimension was determined using 
tlie box-counting method, and several geometric characteristics including 
lengtli distribution, orientation, connectivity, iiuniber of fractures, and total 
length of fractures were quantified in order to construct a two-diniensional 
fracture network model. The fractal dimension of fracture space filling 
observed in 0.5m square areas was found to be proportional to the number of 
fractures in tlie maximum cluster. Tlie number of junctions, fractures, and 
total length of all fractures were also connected to tlie fractal dimension. 
Coniputer-generated two-dimensional fracture network patterns u tilisiiig the 
observed fractal dimension and geometric relationships can siniulate natural 
fracture patterns. 

INTRODUCTION 

Fractured reservoir concepts have received considerable attention in 
order to model the formation and circulation of geothernial reservoirs. The 
fracture network in reservoir host rocks has been assumed to be well connected 
and equivalent to a liomoge~ieous medium. However, Fractal geometry is the 
description of forms more coniplex than tlie standard Euclidean shapes. A 
fractal form is characterized by its fractal dimension, wliicli is greater than its 
topological dimension. 

Considerable work has been done to describe the fractal characteristics 
of shape and surface topologies of fractures (Katz and Thonipson,1983; Tsang 
and Witlierspoon,l983; Brown and SclioItz,198S(a),(b); Vaughan et a1.,1986). 
Space filling and length distribution of fractures have also been identified as 
fractal (Main ct a1.,1990; Ledgsert et a1.,1993; Tsuchiya et a1.,1994). Further, 
Chang and Yortsos (1990) have calculated tlie pressure-transient response of 
single-phase flow in a fractal object. Wataiiabc and Takaliashi (1995) evaluated 
heat extraction capacity using a purely random model consisting of line 
segments and/or round disks. 

Fractal geometry is therefore a natural candidate for the representation 
and modeling of multi-fracture systems in geothermal reservoirs. Natural- 
like reservoir niodels are required in order to characterize better the lieat and 
fluid transfer in geothermal reservoirs. 

The purpose of this study is to characterize natural fracture networks 
in 2D using the space filling fractal dimension together with certain geometric 
features and then to model llie fracture network using these parameters. 

SAMPLE AND NATURAL FRACTURE PATERN 

Tlie Tamagawa Welded Tuffs are mainly composed of rliyolitic and 
dacitic welded tuffs dated between 0.7 to 3.6Ma using fission track and K-Ar 
dating methods (Tanianyu and Lanpliere,l983). Tlie Taniagawa Welded Tuffs 
are one of the main cap rocks andlor reservoir rocks in the Kakkonda 
(Takinoue) and Matsukawa geothermal areas in northern HOI~SIIU, Japan 
(Fig.1). 

yu 

Fig.1 Index map of study area. 

Fractures observed i n  0.5m x 0.5m outcrops were traced onto a 
transparent vinyl sheet. Tlie ratio between tracing resolution which is about 
lcni (Zm,J, and the length of the side of tlie square sheet R,, is 0.02 (l,,,/R,,,). 
Fifteen sheets were traced from Tamagawa Welded Tuffs outcrops for fractal 
analysis and for the geometric characterization of fracture patterns. 

FRACTAL DIMENSION OF SPACE FILLING 

Fig.2(a) shows an example of the fracture pattern from a 0.5m square 
observation area. Fractal dimension of fracture space filling, Dd, was obtained 
by nieaiis of tlie box-counting algoritlim (Klitikenberg, 1994). Using this 
method ratios of the cell size r to R, are 0.02, 0.04, 0.1, and 0.2. In other 
words, lower and upper cutoff levels for calculating fractal dimension are 
0.02 and 0.2 respectively. The lower cutoff level r,,,,$g5 is equal to the 
Zm,$R,,5 as nieiitioned above. Fig.2(b) shows a log-log plot of tlie number of 
cells covered with fracture against cell dimension. Linearity of tlie number of 
cells against cell size is well recognized within the 0.2 to 0.02 range, and the 
slope of the straight line indicates the space filling fractal dimension wliicli is 
1.32. Tlie space filling fractal dimension of all tiatural fracture patterns used 
in this study ranges from 1.08 to 1.48 with a mean value of 1.23. 

Tsuchiya et aL(1994) presented fractal dinlensions of fracture space 
filling Dd at different length scales. Tlie niean values of Dd were 1.28 for both 
l.6nini and lOni square observation areas. Tliese results suggested that the 
fractal dimension of fracture space filling of zoom sequences from microscopic 
to 10 meter order have a single fractal property. 
GEOMETRICAL CHARACTERISTICS 

The selected geometrical features listed in Table1 were obtained from 
tlie natural fracture patterns. Tlie length of fracture and/or fractiirc scgnient 
were defined as the number of the minimum cells, lcni square, covering the 
fracture. Orientation distribution was measured in tlie direction of the line 
between the slart and end points of fracture segment. The natural fractures 
were classified into connected clusters. (OdIing,1992). Fig.3 shows schematic 
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Table 1 Selected parameters for modeling. 
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Fig.:! (a) PLli example of the natural fracture pattern in 0.5m square area, (b) 
the relationship between r / ROs and the number of cells crossed by fractures. 
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illustration of the definition of cluster, orientation and fracture length. On the 
basis of tlie definition of fracture length, if a fracture crosses over minimum 
one cell, the length is counted as unity, and if a fracture does't cross throughout 
the cell, that cell is omitted for counting lengfh. For example, even if one 
fracture is distributed over five cells, the length is defined as 3 shown by 
shaded cells in Fig.3. 

Fig.4 shows a histogram of length distribition. The x-axis is the number 
of cells covering a single fracture and/or fracture segnienl. Fractures of length 
2 are commonest, and the frequency decreases exponentially with increasing 
length. 

The size of the maximum cluster, that containing the largest number 
of fractures, strongly affects the fractal dimension of fracture space filling 
and the visual impression of tlie fracture pattern. Relationships between the 
fractal dimension and the geometric parameters were examined to facilitate 
generation of the fracture network models. 

Fig.5 shows relationship between fractal dimension Dd and number of 
fractures in the maximum cluster (cluster,,). Data is approximated by the 
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Fig.3 Explanation of definition of clusler, orientation and fracture length. 

Fig.4 Length distribution. 
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converted into the number of junctions using tlie correlation shown in Fig.7. 
"lie broken lines in Fig.6 indicate upper and lower h i t s  of tlie number of 
junctions calculated on the basis of the iiuniber of fractures in clustermx. Tlie 
broken line range encloses the area covered with tlie dotted lines in Fig.6. 
Therefore, the number of junctions determined in Figs.5 & 7 for a given fractal 
dimension always satisfies the relation between number of junctions and fractal 
dimension in Fig.6. 

Fig.8 sliows the relationship between fractal dimension and llie number 
of fractures in the whole patterns. Tlie number of fractures as a function of the 
number of fractures in cluster,, is shown in Fig.9, and relation between the 
number of junctions and tlie number of fractures is presented in Fig.10. Using 
these niutual correlations we can get a possible range for the number of fractures 
following the steps given below. 

loo - 

80 - 

step 1 Deterniination of the upper and lower limits of number of 
fractures in the maximum cluster for a given fractal 
dimension using tlie broken lines in F i g 5  
Conversion of tlie upper and lower limits of the number in 1 . 1 .  step 2 

1.0 1.1 13 13 1A 1s cluster-. into tlie number of junctions using Fig.7. 

Fractal dimension Dd step 3 

step 4 

Conveisiin of tlie fracture numbers in cluster,, into tlie number 
of fractures using Fig.9. 
Conversion of tlie number of junctions calculated in step2 
into tlie number of fractures using Fig.10. 
Determination of tlie upper and lower h i t s  of the nuniber of 
fractures for a given fractal dimension. 

Fig.5 Relationship between fractal dimension and number of fractures 
in the maximum cluster. 

step 5 

The broken lines in Fig.8 represents calculated results of steps 1 & 3. 
The dotted line is from steps 2 & 4, and tlie bold lines indicate a possible 
range of tlie number of fractures for a given fractal dimension satisfying tlie 
mutual correlations. 

Fig.11 shows tlie relationship between the fractal dimension and the 
total length of all fractures in whole fracture patterns. The total length is 
presented as functions of the number of fractures in cluster,, , number of 
junctions and number of fractures in Figs.12-14. Tlie possible range of the 
total length is estimated by following steps similar to tlie above procedure: 

Conversion of the number of fractures in clustermx obtained 
from step 1 into the total length of all fractures using Fig.12. 
Conversion of the number of junctions of step 2 into the total 
length using Fig.13. 
Conversion of tlie number of fractures calculated in step5 into 
the total length using Fig.14. 
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Fig.6 Relationship between fractal dimension and number of junctions. 

solid straight line, and the broken lines are defined by following hypotheses: 
a) The number of fractures is unity, when dimension is unity. b) Broken lines 
have the same slope as the approxiniation line and are symmetric with respect 
to tlie approxiniation line. 

Fig.6 sliows the relationsliip between fractal dimension and the number 
of junctions. Tlie data is appoximated by a solid line. Tlie upper dotted line 
has the same slope as that of the approxiniation line and passes tlirougli the 
point (1.0,O.O). Tliis means that number of junctions is zero when fractal 
dimension is unity. The lower dotted line is synimetric about tlie approximation 
line. 

Fig.7 plots number of junctions against number of fractures in tlie 
niaxiniuni cluster. The two geonietric parameters have an adequate correlation, 

the fractal dimension are correlated to each other. 
The number of fractures in clustermx was selected in the range between 

the broken lines in Fig.5 for a given fractal dimension. This value can be 

0 . 1 . 1 . 1 . 1 . 1 . 1 .  

0 24 40 60 80 100 120 140 

tlicrefore, the number of junctions, tlie number of fractures in clusterm, and Number of fractures in cluster,,, 
Fig.7 Relationship between nuniber of fractures i n  the niaxiniuni cluster and 
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1.1308 1330 300 . , . . , . I . 
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Fractal dimension Dd 

Fig.8 Relationship between fractal dimension and number of bctures. 

Number of fractures in cluster,,, 
Fig.9 Relationship between nuniber of fractures i n  the maximum 
cluster and nunibcr of fractures. 
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Number of junctions 
Fig.10 Relationsliip between number of junctions and number of 
fractures. 
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Fig.11 Relationship between fractal dimension and total length of 
all fractures. 
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Fig.12 Relationsliip between number of fractures in the maximum 
cluster and total length of all fractures. 
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Fig.13 Relationsliip between nuniber of junctions and total number 
of all fractures. 
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Number of fractures 

Fig.14 Relationship between number of fractures sild total length 
of all fractures. 

step 9 

step 10 

Conversion of the number of fractures of step 3 into the total 
length using Fig.14. 
Determination of upper and lower limits of the total length of 
all fractures for a given fractal dimension. 

The broken lines in Fig.11 shows the results of step 6, dotted line 
step7, chained line step8, and two-dot-dash line is from step 9. The minimum 
area satisfying all restrictions is enclosed by the bold lines and shown in Fig.11. 

TWO-DIMENSIONAL FRACTURE NETWORK MODEL 

Fig.15 is a flow char( for the computer generation of a fracture network 
model. The number of fractures in cluster,, was selected randomly witliiii 
the broken lines in Fig.5 for an input fractal dimension. After thal, the number 
of junctions was determined randomly within the dotted lines i n  Fig.6 for an 
input fractal dimension. This value for junctions always satisfies the 
relationship between fractal dimension and the number of fractures in cluster-. 
The number of fractures in whole network pattern was obtained raiidonily 
within the broken lines in Fig.8 for an input fractal dimension. The parameters 
such as the number of fractures in the maximum cluster, the number of 
junctions and the number of fractures can be selected independently. 

These selected data are merely inforniation about the number of 
fractures. As the next step, it is necessary to assign length to each fracture on 
the basis of length distribution shown in Fig.4. However, the total length is 
also connected and restricted by the other geometric parameters. If  the 
calculated total length lies outside the broken lines range shown in Fig.11, it  
is necessary to repeat selection of parameters until total length will be within 
the limits of the broken lines shown in Fig.11. 

Drawing rules are schematically illustrated in Fig.16. No preferred 
orientation of fracture direction in the natural fracture patterns was observed. 
Therefore, the growth direction of fractures can be ignored except for the 
contact angle between branch fracture and the original fracture. 0, and 0, in 
Fig. 16 can be selected in tlie range from O'to 180' using a random number 
generator, where e, is the angle of straight line between junctions and e, is 
representing tlie tortuosity of each fracture segment. e, which is growth angle 
of branch fracture segment is also selected randomly, but e, depends on 0, 
so that the bifurcated fractures grow on lhe both sides of the virtual extension 
of the preceding fracture. 

Fig.17 shows examples of computer-generated fracture network model 
in h e  case of input fractal dimension 1.15. Output fractal dimensions are 
1.20 and 1.13 respectively, similar to the input fractal dimension. The 

Start 7 
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I + 
I + 
I J 
L 1 

Calculate length distribution v 
t 
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t 

Draw the maximum cluster 
the other cluster 
individual single fraclure 

Fig.15 Flow chart for generation of fracture network model. 

05 

Fig.16 Schematic illusration fracture drawing. 
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I r  

Fig.17 Examples of computer-generated fracture network model. 

geonietric features of these output patterns resemble those of the parent natural 
fracture patterns. 

SUMMARY 

The fracture distribution in tlie studied section of the Tamagawa Welded 
Tuffs shows fractal properties. Fractal dimensions of fracture space filling of 
0.5ni square observation areas fell within the liniits 1.08 to 1.48. Length 
distribution, orientation, connectivity, the number of fractures and the total 
fracture length were measured to obtain the mutu~l relations between fractal 
dimension and tlie geometric features. 

Using correlations between fractal dimensoin, the number of fractures 
iii clustermx, number of junctions and number of fractures in whole fracture 
pattern, a two-dimensional fracture network model of given fractal dimension 
was generated without the consideration of fracture mechanics or tlie physical 
properties of the rocks. This computer-generated network was almost similar 
to tlie natural fracture patterns in rock sections with respect to fractal dimension, 
geometry and visual impression. 

Tsuchiya et aL(1994) reported uniform fractal properties of fracture, 
space filling and shape, from microscopic to 10 meter scales in tlie same 
rocks. Therefore, it is possible that this artificial model could be expanded to 
the larger scales on tlie basis of self-similarity. We believe that such a modeling 
can be applied to simulate fractal fracture networks in natural geothemial 
reservoirs. 
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