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The basic ob ject ive i n  r e l a t i n g  the aeromagnetic f i e l d  data w i t h  the 

s t ruc tu re  o f  the Curie po int  isotherm i s  t o  compute the lower depth l i m i t  of 
magnetized masses i n  the ear th 's  crust. Rocks lose t h e i r  magnetism a t  the 

Curie temperature a t  which ferr imagnet ic rocks become paramagnetic, and t h e i r  
a b i l i t y  t o  produce detectable magnetization disappears. Thus, the deepest 

l e v e l  i n  the c rus t  containing mater ia ls with d iscern ib le  magnetization I S  

general ly i n te rp re ted  as the depth t o  the Curie po in t  isotherm. 

With appropriate t i t a n i u m  
subst i tu t ions,  Buddi ngton and L i  ndsley (1964) cal  cu l  ated an average Curie 
po in t  ranging betwen 520°C and 560°C f o r  rocks i n  the deep crust. It i s  
general ly bel ieved t h a t  the amount o f  geothermal heatf low should co r re la te  

w i t h  the Curie depth and thus, i n  turn,  t o  the c rus ta l  magnetic f i e l d .  
Our main goal i s ,  therefore, t o  determine the bottom shape o f  the 

magnetized c rus t  from a magnetic anomaly map. Since the magnetic anomalies 
a t t r i b u t a b l e  t o  the bottom geometry are usual ly  q u i t e  smaller and have much 
longer wavelengths than those produced by shallow geological var iat ions,  t h e  
problem i s  comparable t o  searching f o r  a needle i n  a haystack. Early studies 
include those by Vacquier and A f f l eck  (1941) and Bhattacharyya and Morley 

(1965). I n  both cases, each i so la ted  anomaly was f i l t e r e d  and separately 
i n te rp re ted  by the empir ical graphic method using a ver t ica l -s ided prism. 

A more sophist icated method was proposed by Bhattacharyya and Leu (1975a, 
1975b). T h e i r  method r e q u i r e s  an e x t e n s i v e  i n i t i a l  f i l t e r i n g  of t h e  
aeromagnetic data i n  both regional and short wavelength domains. The f i l t e r e d  
data i s  subsequently d iv ided i n t o  a large number o f  blocks. For each block, a 
two-dimensional spectrum and i t s  moments are computed and compared w i t h  a 

model o f  an i so la ted  ver t ica l -s ided prism w i t h i n  a block i n  order t o  l oca te  
the corners of the body. The t o t a l  amount o f  computation i s  tremendous since 

the method requires a two-dimensional Four ier  transform f o r  each block. 
Applying the method t o  the Yellowstone National Park area, they produced the 
Curie i sotherm map we1 1 -corre l  ated w i t h  the known geothermal area . 

51 

The Curie po in t  i s  about 58OoC for magnetite. 



Employing a s i m i l a r  technique, it i s  essen t ia l l y  impossible t o  determine 
Curie depth w i th  any resolut ion a t  a l l  by f i t t i n g  a v e r t i c a l  prism t o  a s ing le  
anomaly. The Curie depths they derived could be changed by as much as 10 km 

without v i o l a t i n g  the observed data. This conclusion i s  seemingly i n  c o n f l i c t  
w i th  those of Bhattacharyya and Leu (1975b). 

A l l  methods reviewed here are commonly based on the assumption t h a t  there 
e x i s t s  an i so la ted  magnetic source f o r  each anomaly. Each ind i v idua l  anomaly 

i s  assumed t o  be caused by a s ing le  ver t ica l -s ided prism (Bhattacharyya and 
Leu, 1975a, 1975b) o r  a truncated v e r t i c a l  cone. Such i so la ted  models are apt 
t o  generate spurious anomalies, p a r t i c u l a r l y  due t o  t h e i r  u n r e a l i s t i c a l l y  Well- 
defined corners and v e r t i c a l  surfaces. These spurious anomalies can induce 
s i g n i f i c a n t  e r ro rs  i n  e i t h e r  direct-model i n g  o r  spectrum caiculat ion.  

Rock formations causing long wavelength magnetic anomalies a t  a depth 
close t o  the Curie po int  are more l i k e l y  t o  have a continuous l a t e r a l  
d i s t r i b u t i o n  rather  than i so la ted  blocks o f  well-defined geometrical bodies. 
A r e a l i s t i c  model a t  t h i s  depth should m a n i f e s t  a cont inuous l a t e r a l  
d i s t r i b u t i o n  o f  magnetic m a t e r i a l s  hav ing  v a r i a b l e  th i cknesses  and 
suscep t ib i l i t i es .  

Fluctuat ions i n  long wavelength magnetic anomalies can be a t t r i b u t e d  t o  
l a t e r a l  var ia t ions e i t h e r  i n  magnetization strength o r  i n  Curie depth. These 
double uncer ta in t ies make the task o f  simultaneously determining both the 
magnetizations and the Curie depth very d i f f i c u l t ,  i f  not impossible. S i m i l a r  
uncer ta in t ies apply t o  many geophysical modeling theories, e.g., a t h i n  

magnetic d ike f o r  which the anomaly i s  the same as long as the product of 
thickness and s u s c e p t i b i l i t y  remains the same. However, i t  can be shown t h a t  
the statement i s  no longer t r u e  i f  the d ike has a considerable thickness fo r  
which case both the thickness and the s u s c e p t i b i l i t y  can be independently 

determined from observed data (Won, 1981). The present approach i s  based on 
the c lass ica l  Gauss method for solv ing nonlinear equations (Carbato, 1965; 

Johnson, 1969; Won, 1981) coupled w i t h  Marquard t ' s  i n v e r s i o n  method 
(Marquardt , 1963) t o  der ive continuous c rus ta l  thickness and suscepti b i  1 i t y  

p r o f i l e s  from regional magnetic data. 
Figure A-9 shows the model t h a t  i s  used f o r  i n v e r t i n g  magnetic data. The 

model consists of laminated t h i c k  v e r t i c a l  prisms having f l a t  t op  surfaces and 
1 i n e a r l y  connected i n c l i n e d  bottom surfaces. The magnetic s u s c e p t i b i l i t y  

below the lower boundary i s  assumed t o  be zero so t h a t  t he  bottom geometry 
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represents the Curie isotherm topography. A1 though data w i l l  be confined 

w i t h i n  the laminated block region, two semi - i n f i n i t e  slabs are added on e i t h e r  
Side i n  order t o  reduce the edge ef fects  o f  the f i r s t  and l a s t  blocks. The 
unknown parameters t o  be determined are the depth (h's) a t  each nodal p o i n t  
and the magnetic s u s c e p t i b i l i t y  ( k ' s )  o f  each pr ismat ic body. 

The model i s  two-dimensional w i t h  an a r b i t r a r y  s t r i k e  angle w i t h  respect 
t o  the magnetic north. Data are assumed t o  be obtained a t  a constant a l t i t u d e  

along a t raverse perpendicular t o  the s t r i ke .  Since the method uses t o t a l  
f i e l d  magnetic data, there i s  no need f o r  reducing the data t o  the polar  

anomalies. The magnetic anomaly generated by a s ing le  v e r t i c a l  block having a 
f l a t  top and an i n c l i n e d  bottom can be derived by a n a l y t i c a l l y  combining two 
i n c l i n e d  dikes. By summing up these ind i v idua l  blocks, we can compute t o t a l  
f i e l d  for  any given set o f  blocks having var iab le depths and suscep t ib i l i t i es .  

Techniques f o r  determining unknown parameters o f  a nonl inear func t i on  
invo lve i t e r a t i v e l y  correct ing cu r ren t l y  assumed parameters by d i f f e r e n t i a l  
amounts, thereby minimizing the rms e r r o r  between the theo re t i ca l  p red ic t i on  
and t h e  observed data. Two predominant techn iques  o f  de te rm in ing  t h e  

correct ion amounts are Gauss' method and the gradient, o r  t he  steepest descent 
method. Marquardt's method combines these methods by control1 i n g  the amounts 
o f  d i f f e r e n t i a l  correct ion t o  insure both the convergence and speed. 

Using the geometrical model and the invers ion technique, we analyzed 
aeromagnetic data of t he  Yellowstone Park, Wyoming (Fig. A-10). The d i g i t i z e d  
data were f i r s t  low-pass f i l t e r e d  a t  a 10-km wavelength. A t o t a l  o f  12 east- 

west p r o f i l e s  evenly d i s t r i b u t e d  i n  the area were then subjected t o  t h e  
i n v e r s i o n  process t o  d e r i v e  s imu l taneous ly  t h e  depth and s u s c e p t i b i l i t y  

p r o f i l e s .  Figure A-11 shows the estimated Curie depth and Fig. A-12 t h e  
s u s c e p t i b i l i t y  s t ruc tu re  f o r  the e n t i r e  area. A cursory check w i t h  ava i l ab le  
surface geological map o f  the area shows the r e s u l t s  are reasonably corre la ted 
w i t h  l oca l  geology. Since the r e s u l t s  der ived here represent the thickness o f  
t he  e n t i r e  magnetized c rus t  and i t s  average c e p t i b i l i t y ,  i t  i s  ra the r  
d i f f i c u l t  t o  compare w i t h  the ava i l ab le  super a1 information. 

The main consolat ion i s ,  however, that, f o r  the f i l es ,  t he  rms 
di f ference between the f i e l d  data and model data i s  mostly less than two 
gammas, an excel lent  match f o r  the geologica l ly  complex area. 

( 
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Fig. A-9. 
Mathematical model o f  the Curie depth. 
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Fig. A-10. 
F i l t e r e d  aeromagnetic map a t  a 50 gama contour in terva l .  Broken l i n e  shows 
the boundary of the Yellowstone Park. 

54 



3- i 
j 4 

~ 

i 

rJ .... . 

rJ 
[3 

[I] 

.. . .. .. ....... ... .... 
18 < 

15-18 

12-15 

9-12 

n 6-9 

44.1 
1 

\ I 

0. i 

Depth t o  the Curie isotherm derived -from the  aeromagnetic p r o f i l e s :  
i n t e r v a l  i s  3 km. 

contour 

55 



J 

5.0-5.2 

5.2 > 

U.01 
1' 15' 

Fig. A-12. 
Magnetic suscepti b i  1 i ty map d e r i  ved f rom the  aeromagneti c p r o f  i 1 es : 
in te rva l  i s  0.0002 emu. 
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