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The geothermal energy resource i n  the eastern United States i s  p r i m a r i l y  
a l iquid-dominated, low-temperature system. Systematic e f f o r t s  t o  estimate 
the  geothermal resources o f  the e n t i r e  United States have been made by t h e  
U.S. Geological Survey (White and Williams, 1975; Muff ler ,  1979; Sammel, 1979; 
Muffler and Cataldi , 1979). 

The major factors  t h a t  r e s u l t  i n  geothermal anomalies i n  the eastern 
United States are d i f f e r e n t  than those i n  the West. For example, heat from 
radioact ive decay i s  more important i n  the East. I n  the eastern Uni ted 

States, known geothermal gradients are i n  the range o f  lo" t o  50°C/km. 
Gradients higher than 3O0C/km are considered t o  be anomalously high. The 
geothermal gradient, AT/&, i s  a funct ion o f  - both conductive heat f low, q, and 
thermal conduct iv i ty,  K, because: 

High gradients w i l l  therefore be found where the l oca l  heat f low has a 
h igh value, and where the l oca l  thermal conduct iv i ty  o f  rocks i s  low. As 
discussed below, high heat f low i s  cha rac te r i s t i c  o f  unmetamorphosed granites; 
low thermal conduct iv i ty  i s  cha rac te r i s t i c  o f  sediments t h a t  blanket these 
granites. The e f f i c i e n t  t rans fe r  and use o f  geothermal energy always requires 

convective t ranspor t  o f  thermal energy by f l u ids .  I n  a l l  geothermal systems, 

the most desirable locat ions are those where the warmest f l u i d s  can be 
extracted from the shallowest depths. These locat ions are usually, but not 
always, coincident with regions where the  conductive heat f l ow  i s  highest. 

B i r ch  e t  a l .  (1968), Lachenbruch (1968), and Roy e t  a l .  (1968) showed 
t h a t  the l o c a l  heat f low i n  the eastern United States i s  re la ted  t o  the  
concentrat ion o f  uranium and thorium i n  surface rocks (mostly grani te) .  
Costain and Glover (1980) found a s im i la r  re la t i onsh ip  i n  the southeastern 
United States. Isotopes o f  uranium (U), thorium (Th), and potassium occur i n  

su f f i c i en t  abundance and have h a l f - l i v e s  s u f f i c i e n t l y  long t o  be important f o r  
heat generation from radioact ive decay (Birch, 1954). Decay o f  a uranium atom 
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produces about four times as much heat as the decay o f  thorium atom; however, 
Th/U r a t i o s  i n  many grani te  rocks are about equal t o  four  so t h a t  thorium i s  
usual ly  as important as uranium. The heat generated from uranium and thorium 
i n  t y p i c a l  grani tes i s  about 85-90% o f  the t o t a l ;  heat from potassium decay i s  
cons.iderably less important, about lO-lSX The immediate imp1 i c a t i o n  o f  t h i s  
i s  t h a t  the d i s t r i b u t i o n  o f  uranium and thorium i n  the upper 10 t o  15 km o f  
the ear th 's  c rus t  i s  p r i m a r i l y  responsible f o r  the observed l a t e r a l  va r ia t i ons  
i n  surface heat f low i n  the eastern United States. 

Unmetamorphosed grani te  p l  utons and ba tho l i  t hs  re1 a t i  vely enriched i n  
uranium and thorium are exposed i n  the Piedmont Province (Fig. A-3). These 
Piedmont rocks are concealed t o  the southeast by a seaward-thickening wedge o f  
A t l a n t i c  Coastal P l a i n  sediments. S imi lar  grani to ids occur i n  these concealed 
Piedmont rocks, which are the basement beneath the A t l a n t i c  Coastal Plain. 

Geothermal resources i n  the Appalachian Mountain System and the A t l a n t i c  
Coastal P l a i n  may be grouped i n t o  (I) water-saturated sediments o f  low thermal 
conduct iv i ty  over ly ing radioact ive heat-producing granites, (11) areas o f  
normal geothermal gradient , ( I I I ) hot and warm springs emanating from f a u l t -  
f r a c t u r e  zones as a r e s u l t  o f  leakage from greater depths, ( I V )  hot  dry rock, 
especia l ly  rad ioact ive grani tes beneath sediments o f  low thermal conduct iv i ty.  

Resource I (Fig. A-4) i s  re fe r red  t o  as the "radiogenic model" (Costain 
e t  al., 1980) and has been the p r inc ipa l  ob ject ive o f  the geothermal program 
a t  V i r g i n i a  Polytechnic I n s t i t u t e  and State Univers i ty  (VPIaSU). Temperature 
gradients are high i n  areas where the resource i s  found because heat-producing 

g ran i te  basement rocks are blanketed w i t h  a t h i c k  sequence o f  sediments of 
r e l a t i v e l y  low thermal COndUCtiVity (Fig. A-5). Large volumes o f  grani te  wi th  

low concentrations o f  uranium and thorium w i l l  increase the  subsurface tempera- 
t u r e  substant ia l ly ,  and r e l a t i v e l y  higher temperatures w i l l  be found a t  
shallow depths w i t h i n  sediments t h a t  o v e r l i e  such bodies, as ind icated i n  Fig. 
A-5. An understanding o f  the d i s t r i b u t i o n  o f  grani tes and o f  uranium and 
thorium i n  the basement rock i s  therefore important i n  order t o  def ine 
locat ions where the  highest temperatures occur a t  the shallowest depths. 

Optimum s i t e s  f o r  the development o f  geothermal energy i n  the eastern 
United States probably w i  11 be associated with the f 1 at-1 y i  ng , re1 a t i  vely un- 
consol idated sediments t h a t  under l ie  the A t l a n t i c  Coastal Plain. These 
sediments have a r e l a t i v e l y  low thermal conduct iv i ty,  and there are many 
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Fig. A-3. 
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Late Paleozoic syn- and post-Metamorphic grani tes  i n  the  southeastern 
United States .  
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Fig. A-4. 

Radiogenic model . 
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Fig.  A-5. 
E f f e c t  o f  sediment blanketing. 
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po ten t ia l  aqui fers w i t h i n  the sandy, deeper par ts  o f  the sedimentary sect ion 

t h a t  probably contain large quan t i t i es  o f  hot water. 
Resource I 1  i s  widely avai lab le throughout much o f  the United States 

(Sammel, 1979). The e n t i r e  A t l a n t i c  Coastal P l a i n  would f a l l  i n t o  t h i s  
resource category. West o f  the Blue Ridge, t h i c k  sequences o f  Paleozoic 
sediments blanket c r y s t a l  1 i n e  basement rocks o f  unknown heat generation. I n  
such areas, t h i c k  shales w i l l  r e s u l t  i n  higher geothermal gradients than 
carbonate rocks o r  sandstones, even where the heat f low i s  normal. As noted 
by Sammel (1979), the low-temperature geothermal waters o f  the centra l  and 
e a s t e r n  U n i t e d  S ta tes  a r e  known o r  i n f e r r e d  t o  be extens ive.  T h e i r  
u t i l i z a t i o n  i s  dependent upon i d e n t i f i c a t i o n  o f  locat ions where condi t ions f o r  
recovery are economically favorable. 

Resource I11 i s  found i n  the northwestern p a r t  o f  V i r g i n i a  and adjacent 

par ts  o f  West V i rg in ia ,  where approximately 100 springs have temperatures 
ranging from 9" t o  41°C. The hot test  springs are i n  the Warm Springs a n t i -  
c l i n e  i n  folded sedimentary rock o f  Paleozoic age i n  northwestern Vi rg in ia .  
A l l  o f  the warm springs i n  the va l l ey  are grouped near topographic gaps 
apparently associated w i t h  v e r t i c a l  transverse f rac tu re  zones (1 inears)  t h a t  
cut  across adjacent f o lds  t o  the east and west (Geiser, 1976). Faul ts and/or 
j o i n t s  p lay an important r o l e  i n  the  l oca t i on  o f  t he  warm springs, because 
warm Springs are always near gaps t h a t  probably have developed along zones o f  
increased f rac tu re  o r  j o i n t  density. 

There i s  no known a s s o c i a t i o n  o f  w a r m  s p r i n g s  w i t h  heat-producing 
granites. The o r i g i n  o f  the warm springs i n  the Warm Springs A n t i c l i n e  i n  
northwestern V i r g i n i a  as proposed by Perry e t  al., (1979) i s  as follows. 
Meteoric water enters steeply dipping S i l u r i a n  quar tz i tes on the northwest 
l imb and permeates t o  depths s u f f i c i e n t  t o  heat t he  water i n  the  presence o f  
the normal geothermal gradient (about 10°C/km) near Hot Springs, V i rg in ia .  
Ground-water f lowl ines near the surface and midway between the topographic 

gaps are approximately v e r t i c a l  (and p a r a l l e l  t o  bedding w i t h i n  the  steeply 
d i p p i n g  q u a r t z i t e s )  because o f  t h e  boundary c o n d i t i o n  imposed' by t h e  

topographic r e l i e f  between the gaps. A t  depth, the water moves h o r i z o n t a l l y  
and in te rsec ts  east/west trending, v e r t i c a l  , transverse f r a c t u r e  zones. The 
temperature o f  the water issu ing from springs located along t h e  transverse 
f r a c t u r e  zones depends upon the depth reached by the water, and on the degree 
o f  i t s  mixing w i th  cooler, shallower water. I m p l i c i t  i n  t he  model i s  t h e  
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important requirement t h a t  the aquifer have an uninterrupted v e r t i c a l  re1 i e f  
l a rge  enough t o  al low the  water t o  reach depths s u f f i c i e n t  t o  heat it. 

The water f low from B o i l e r  Spring (4OOC) a t  Hot Springs, V i rg in ia ,  i s  
86,220 gallons/day (Hobba e t  al., 1979). The f low a t  Bolar Spring (22OC), 
about 20 km northeast o f  Hot Springs, i s  about 3,000,000 gallonslday. Because 
the t o t a l  amount o f  heat released a t  t he  l a rge r  but cooler springs i s  much 
greater than t h a t  released a t  the smaller but warmer springs (Hobba and 
others, 1979, Table 3 ) ,  the geothermal po ten t i a l  o f  the larger,  cooler springs 
i s much higher. 

Los Alamos National Laboratory, the leader i n  the development of hot dry 

rock resources (Resource I V ) ,  p red i c t s  l a rge  such po ten t i a l  resources i n  t h e  
East. A t  any given depth, temperatures i n  hot dry rock i n  the East w i l l  be 
lower than those i n  the West. The range of temperatures t o  be expected i n  the  
East can be estimated from Fig. A-5. O f  p a r t i c u l a r  relevance t o  the develop- 
ment o f  a hot dry rock resource i n  the eastern United States i s  t he  physical 
s ign i f icance o f  the l i n e a r  r e l a t i o n  between heat f low and heat generation. If 
the slope, D, o f  the l i n e a r  r e l a t i o n  i s  d i r e c t l y  and simply re la ted  t o  a t h i c k -  
ness parameter (Costain and Glover, 1980), then thickness o f  g ran i te  and 
p red ic t i on  o f  subsurface temperature i n  a hot dry rock environment can be made 
with a h igh degree of confidence. The v a l i d i t y  o f  t h i s  i n t e r p r e t a t i o n  o f  t he  

meaning o f  D could be constrained by r e f l e c t i o n  seismic data. 
Several kinds of geophysical data have been used by us i n  our ta rge t i ng  

strategy, the most important o f  which are heat f low determinations used t o  
confirm coincidence o f  h igh heat f low and low thermal conduct iv i ty;  these are 
the  cha rac te r i s t i cs  o f  the radiogenic model. We have a lso made extensive use 
o f  g r a v i t y  data i n  our ta rge t i ng  strategy. Because g ran i te  usual ly  i s  l ess  
dense than t h e  country rocks i n t o  which i t  has been emplaced, g ran i te  occur- 
rences are commonly revealed by negative Bouguer g r a v i t y  anomal ies. 

One of the p r i n c i p a l  object ives o f  the geothermal program a t  VPI&SU has 
been t o  locate and study uranium- and thorium-bearing heat-producing grani tes 

i n  t h e  Piedmont (Speer and others, 1980), and t o  p r e d i c t  he occurrence of 
such g r a n i t e s  beneath t h e  wedge-shaped body o f  c h i e f l y  unconso l i da ted  

sediments beneath the  A t l a n t i c  Coastal Plain. Thickness can reach 3 km. 
During 1978-79, 49 holes w e r e - d r i l l e d  t o  a depth o f  approximately 300 m (1000 
ft) on t h e  A t l a n t i c  Coastal P la in  from New Jersey t o  North Carol ina t o  
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determine heat flow. Results from the  Coastal P la in  have been summarized by 
Lambiase e t  a1 . (1980). 

The Portsmouth, V i rg in ia ,  g rav i t y  anomaly (Fig. A-6) i s  an excel lent  
example of a negative g rav i t y  anomaly over a confirmed (by d r i l l i n g )  concealed 

heat-producing gran i te  beneath 600 m o f  sediments. The geothermal gradient i n  
the  hole over the  g rav i t y  anomaly i s  about 4Z0C/km; the  gradient i s  27"C/km i n  
a hole d r i l l e d  nearby (12 km) but o f f  the  anomaly i n  the  same sequence o f  sedi- 
ments. The heat f low over the  gran i te  i s  about 79 mW/m . This i s  exce l len t  2 

conf i rmat ion o f  the  radiogenic p lu ton model . 
One promising area fo r  geothermal development discovered t o  date i n  the  

northern A t l a n t i c  Coastal P la in  i s  on the  Eastern Shore between C r i s f i e l d  i n  

southern Maryland and Oak Ha l l  i n  northern Vi rg in ia .  A deep hole was d r i l l e d  
a t  C r i s f i e ld ,  Maryland, because o f  the  known high geothermal gradients there 
and the  moderate depth-to-basement. Upon completion on the  C r i s f i e l d  wel l ,  i t  

was discovered t h a t  the  "basement" seismic r e f l e c t o r  marked the  top  o f  a 
poor ly known 75-m-thick ( l o c a l l y )  indurated, high ve loc i t y  sect ion o f  Coastal 
P la in  sediments, and t h a t  c r y s t a l l i n e  basement was a t  the  base o f  t h i s  
indurated sequence a t  a depth of 1.36 km. Temperature a t  the  top o f  Crysta l -  
l i n e  basement was found t o  be approximately 58°C. The temperature predicted 
a t  the  base o f  the  Coastal P la in  sediments a t  C r i s f i e l d  was about 16% less  
than the  measured temperature because o f  the uncer ta in ty  i n  est imat ing the  
thermal conduct iv i ty  o f  Coastal P la in  sediments i n  the  lower 78% of t he  
sedimentary sequence. 

Three zones i n  the  C r i s f i e l d  hole were pump tested. Zone No. 1 was 

perforated between 1262 m and 1285 m. The temperature o f  the  water f low ing  
from the  perforated zone was 57.2OC. Water pumped from Zone No. 2 (1187-1227 

m) f o r  48 hours a t  an average r a t e  of 119 gpm produced a head drawdown o f  84 
m. The temperature o f  water a t  the  leve l  o f  per fo ra t ion  was 56°C and a t  the  

surface the  discharge temperature was 51'C. Zone No. 3 (1155-1170 m) produced 
an averaged discharge o f  32 gpm f o r  36 hours, r e s u l t i n g  i n  a s t a t i c  drawdown 
o f  30 m. Downhole water  temperature was 54°C and s u r f a c e  d i scha rge  
temperature reached 35°C. 

L imi ted hydrologic and heat f low data now ava i lab le  make i t  poss ib le  t o  

estimate the  thermal 1 i f e t ime  o f  a geothermal resource ( the radiogenic model ) 
beneath the  A t l a n t i c  Coastal Plain. Laczniak (1980) modeled the  response o f  a 
leaky aqu i fe r  system t o  a pumping p lus i n j e c t i o n  wel l  (a s ing le  d ipo le )  using 
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Fig. A-6. 
Map showing locat ions o f  seismic data i n  V i rg in ia  (Smith Point  and Portsmouth). 
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t he  in tegrated f i n i t e - d i f f e r e n c e  method. The model was run f o r  a simulated 

per iod o f  15 years o r  u n t i l  steady-state thermal and f l u i d  f low was reached. 
A doublet system (dipole) w i t h  d i r e c t  i n j e c t i o n  back i n t o  the reservo i r  was 

shown t o  be a feas ib le  method o f  ex t rac t i ng  heat from the  low-temperature, 
l iquid-dominated geothermal systems of the A t l a n t i c  Coastal Plain. 

Important conclusions o f  Laczniak's study were: a) d i r e c t  i n j e c t i o n  back 
i n t o  the reservo i r  may be necessary t o  maintain s u f f i c i e n t  f l u i d  pressure a t  
the production wel l  f o r  systems w i t h  a low permeabil i ty; b) temperature d i s -  
t r i b u t i o n  w i t h i n  the system i s  only s l i g h t l y  a f fected by changes i n  perme- 

a b i l i t y  i n  the range 10-100 md (m i l l i da rc ies ) ;  c )  r e s t i n g  the system fo r  
periods of 6 months does not r e s u l t  i n  a s i g n i f i c a n t  recovery; d) a doublet 
system with thermal and hydrologic condi t ions s i m i l a r  t o  those encountered a t  
Cr is f ie ld ,  Maryland, a wel l  spacing o f  1000 m, a permeabi l i ty  o f  100 md, and a 
pumping-injection stress of 500 gpm ( i n j e c t i o n  temperature 44OC) could produce 
5.5 m i l l i o n  Btu's per hour over a per iod greater than 15 years. 

I n  conclusion, geothermal energy may be an important resource f o r  t h e  

eastern United States. Three resource types ( the  radiogenic model, normal 
geothermal gradient resources, and hot springs) appear t o  be favorable fo r  
immediate development. Predict ions about the thermal longevi ty  o f  the eastern 
geothermal resource are favorable. 
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