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INTRODUCTION 

It has long been recognized that extensional 
crustal regimes have unique structural and petrologic 
features. Imbricated detachment faults develop in 
response to the extension, dividing the crust into 
vertically and horizontally stacked blocks. Continued 
extension exposes ever deepening crus tal levels, 
bringing to the surface deep seated rocks such as 
mylonites. Hydrothermal fluids play an important 
role in the development of these features. Further, 
they have their own unique seismological signatures, 
including extensional earthquake focal mechanisms 
along reflective fault surfaces and shallow brittle- 
ductile transitions with correspondingly thin 
seismogenic layers. This paper reviews some of what 
is known about the seismology of extensional 
hydrothermal systems, with examples drawn from 
the Mojave Desert and Owens-Death Valley regions of 
California, including their metamorphic core 
complexes and the Coso-Indian Wells Valley 
geothermal areas. 

REFLECTIONIREFRACTION STRUCTURE 

On regional scales, extended crust appears to 
present a volumetric paradox: in reflection and 
refraction data, the bottom of the crust appears 
unexpectedly flat across zones of significant 
displacement. In the Owens-Death Valley region 
extension of several hundred percent has produced 
crustal thinning of less than a quarter of its likely 
original thickness (Figure 1; Shalev and Malin, in 
prep.). 

More locally, the deep crust can appear domed, as 
for example in the case of the Rand Mts., the Whipple 
Mts. core complex, and the Coso-Indian Wells Valley 
areas (Figure 1.). In the upper half of the crust, parts 
of the reflection structure correlate with known 
surface geology, as in the exposure of Rand Schist in 
the Rand Mts., the mylonite front in the Whipple 
Mts., and active listric faults in the southern Owens 
Valley (Figure 2; modified from Caruso et al, in prep.; 

Monaster0 et al; unpublished data; Malin et al., in 
press; Malin et al. in prep.). 
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Fig. 1. A preliminary Moho depth contour map of 
eastern central California, from the San Joaquin 
Valley on the west to Death Valley on the east, and 
from Mammoth Lakes area on the north to the 
Mojave Desert on the south. The central north-south 
strip is along the Owens Valley. The closed-in 
contours in the southern Owens Valley lie beneath 
the Coso-Indian Wells Valley area. The map is based 
on forward modeling of PmP travel times from both 
explosions and earthquake data, with the subsurface 
reflection point indicated with black dots. (Fig. from 
Shalev and Malin, in prep.; Data are from the 
Southern Sierras Continental Dynamics Project.) 
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Fig. 2 Generalized 
Owens Valley in the 

cross section of the southern 
area of the Cos0 Range. The 

cross section is based on the geology of Duffield et al., 
(1980) and interpreted seismic reflection section of 
Caruso et al. (in prep.). The strong band of east- 
dipping reflections underneath Rose Valley is 
thought to represent a major, listric fault zone which 
soles into a shallow brittle-ductile transition. 

3-D VELOCITY STRUCTURE 

In the case of the Cos0 geothermal area, 
earthquake tomography and forward modeling of 
refraction data reveal a heterogeneous velocity 
structure in the otherwise petrologically uniform 
basement above 5 km (Figures 3 and 4; modified from 
Shalev and Malin in prep., and Caruso and Malin, in 
prep.). IIigh velocity regions may correlate to 
relatively unfractured, mineralized, or low porosity 
rocks. 

Further, the velocity structure at Cos0 appears 
anisotropic. This anisotropy is readily apparent in S- 
wave observations, which show azimuthally 
dependent particle motions and arrival times (Figure 
5; modified from Lou and Rial, 1994). 

SEISMOTECTONICS 

Microearthquakes in the southern Owens Valley 
occur in spatially restricted clusters that group 
together along a northwest ward trend (Figure 6). A 
possible interpretation of this clustering is that the 
events are taking place mainly at the intersections of 
fault segments. Less frequent, larger earthquakes 
perhaps jump between segments, as in the case of the 
1992 Landers M=7+ earthquake. The shallow 
seismogenic cut off reflects the local high heat flow, 

lying well above 10 km in the case of the Cos0 
Geothermal area. 

In the Coso-Rose Valley areas, earthquake 
activity often appears in the form of swarms whose 
spatial extents expand with time (Figure 7; Malin et 
al., unpublished data). While the time-distance 
characteristics of these swarms suggest the 
involvement of flowing fluids, simple models 
assuming Coulomb failure of a poroelastic medium 
fail to account for the spatial distribution of events 
(Lakings, unpublished ms). 

Preliminary composite focal mechanisms from 
the Cos0 Geothermal area indicate that the local state 
of stress there is consistent with the regional stress 
(Figure 8; Lakings, unpublished ms). However, a full 
accormt of the interaction of the regional stress with 
the range of normal and strike slip faults observed at 
this site has not yet been given. 
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Fig. 3. Earthquake P-wave tomography of the Cos0 
area showing high velocity regions in the upper 1.5 
km of the crust. One possible interpretation of these 
zones is in terms of regions of either low fracture 
density or secondary mineralization. (Fig. modified 
from Shalev and Malin, in prep.). 
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Fig. 4 Results of forward modeling of explosion 
source refraction data from the Cos0 area (Caruso and 
Malin, in prep.). The high velocity feature south of 
the line crossing coincides with the one seen in the 
earthquake P-wave tomography. 
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Flg. 5 An observation of shear wave splitting from 
the Cos0 area. The top 3 traces and associated 
polarization diagram show vertical, north, and east 
motions in a time window centered on the S-wave. 
The polarization diagram shows that the S-wave is 
split into 2 orthogonal motions, a typical indicator of 
S-wave significant S-wave anisotropy. The lower 
traces and polarization diagram show the motion 
after rotation into fast and slow directions of S-wave 
propagation. Figure from Lou and Rial (1994). 

DISCUSSION 

The surface geology and seismic 
reflection/refraction structure of the Rand and 
Whipple Mts., for example, show that regional 
extension of the crust results in local tilting and 

doming. This process exposes deep seated rocks along 
low angle faults, which are themselves associated 
with significant amounts of hydrothermal flow. The 
end member of these processes is the development of 
metamorphic core complexes. In the Rand and 
Whipple Mts, the times of active extension are long 
gone. Moreover, the immediate effects of shallow 
hydrothermal activity have been removed by 
weathering. Aside from geometric arguments, their 
seismotectonic evolutions are unknown. 

In the case of the southern Owens Valley, 
however, both the extensional and hydrothemal 
processes are active and can be recognized in their 
unique seismology. Reflection profiles from this 
region contain the same type of listric faults seen in 
the Tertiary extended terrains of the Mojave - in the 
Whipple Mts. and Waterman Hills core complexes. 
The localization of seismicity on fault intersections 
and the space-time development of earthquake 
swarms maybe related to concentrations of 
hydrothermal activity. Locally high heat flows 
account for thin seismogenic layers. The 3-D velocity 
structure suggests the presence of shallow low 
porosity or unfractured zones, as well as areas of 
a~sot ropy  . 
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Fig. 6 Epicenter plot of 3387 M > 1.0 earthquakes in 
the southern Owens Valley, centered on the Coso- 
Indian Wells Valley region. The events were detected 
and located by the seismic network operated by the 
USGS-CIT in the southern California region. The 
earthquakes appear in clusters, groups of which define 
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a trend to the northwest. The clusters are interpreted 
as being located at the intersections of faults and 
associated with hydrothermal systems of this region. 
The base boundary is that of the China Lake Naval 
Air Weapons Station. 
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Fig. 7 This figure shows the space-time evolution of 
the Rose Valley, CA, earthquake swarm in the first 
month. The circles shown have radii equal to the 
rupture lengths of the microearthquakes that took 
place at the time and latitude shown. The radii were 
determined using the moment-stress drop relations of 
Abercrombie and Leary (1993). Important features are 
the build up and decay of the sequence, including the 
larger events south of the initial swarm and almost 1 
month later. It should be noted that another part of 
this swarm took place 7 mo. later. 

Many of these seismic characteristics contrast 
with those of volcanic hydrothermal systems, such as 
Hawaii, Iceland, or Yellowstone. While highly 
seismically active, the extensional systems appears to 
lack seismic tremors. Further, in the case of the 
southern Owens Valley, the mechanics of local 
earthquakes conform to the regional structure and 
crustal-dynamics, as do the reflection and refraction 
observations. The recognition of these unique 
signatures should aid in the exploration of 
extensional hydrothermal systems. The significance 
of the clustered earthquakes and spreading swarms 
needs to be studied further, as these they may hold the 
keys to the local crustal fluid system. Finally, both 
earthquake and reflection exploration needs to be 
done in a regional context in order to avoid missing 
the central characteristics of this system. 

MALIN 
Eigenvalues and eigenvectors 
of summed moment tensor 

Ei, menvectors Eigenvalues 
4.33 ( .928, .370, -.039) 
-.7 17 ( -.013. .137, .990) 
-3.62 ( .372, -.919, .132) 

Components of eigenvectors are (east, south down) 

I 

Fig. 8 Eigenvalues and eigenvectors of a moment 
tensor analysis of composite microearthquake focal 
mechanisms from the Cos0 geothermal area. The 
values and directions are consistent with the regional 
state of stress inferred from larger earthquakes and 
geological relationships. (Fig. from Lakings, 
unpublished ms). 
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