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Improved Dual-Porosity Models for Geothermal Reservoir Simulation

R. W. Zimmerman, G. Chen, T. Hadgu, and G. S. Bodvarsson

Since their introduction by Barenblatt et al. ( 1960),

dual-porosity models have been widely used for simulating

flow in fractured reservoirs. In a dual-porosity system, the

matrix blocks provide most of the storage of the reservoir,

whereas the fractures provide the global transmissivity.

Initially, most work on dual-porosity models emphasized

the development of analytical solutions for idealized reser-

voir problems. Increasingly, the dual-porosity approach is

being implemented by numerical reservoir simulators. Ac-

curate numerical simulation of a dual-porosity problem of-

ten requires a prohibitively large number of computational

cells to resolve the transient pressure or saturation gradients

in the matrix blocks. As part of our DOE-funded research

on improved methods for geothermal reservoir simulation,

we have been developing procedures for dual-porosity res-

ervoir simulation that circumvent the need to discretize the

matrix blocks. In our new approach, the mass and energy

interactions between the fractures and matrix ' blocks are

described by nonlinear ordinary differential equations.

When implemented into a numerical simulator, this proce-

dure eliminates the need to discretize the matrix blocks and

thereby allows more efficient simulation of reservoir prob-

lems. This approach has been carried out for single-phase

isothermal flow (Zimmerman et al., 1993a) and single-

phase nonisothermal flow (Zimmerman et al., 1993b); it is

currently being extended to two-phase (water/steam) now

of the type that occurs in geothermal reservoirs. In the

following summary, we describe the application of this

method to single-phase isothermal flow problems.

DUAL-POROSITY MODELS

When a single-phase, slightly compressible fluid

flows isothermally through a macroscopically homo-

geneous fractured medium, the fluid pressure Pf in the frac-

tures is governed by the equation

apf(.X,t')
tfcf =-•92Pf (x,t)+Qix,t) ,

at

where t is time, x is the position vector of a point in the

fracture continuum, 4 is the effective permeability of the

fracture continuum, *, is the total fracture porosity, and 9is

the total compressibility of the fractures and the fluid

within them. Q is a volumetric source/sink term represent-

ing fluid flow from the matrix blocks to the fracture system

per unit of total volume.

One commonly used 'type of dual-porosity model al-

lows global flow only through the fracture network, with

the matrix blocks serving as contjnuously distributed

sources/sinks of fluid for the fractures. The matrix blocks

at each location in the fracture continuum are represented

by a single average pressure, Pm(X,t'), Conservation of

mass for the matrix block leads to the following equation

for Pm:

ap.(x. t) 1
0mcm "' • = -Q(x, t)

8t

To close the system of equations given by (1) and (2), an

equation is needed to relate Q to Pf and Pm· Warren and

Root (1963) assumed that Q is proportional to Pf - Pm:

ak. c
Q(x, t)=--;1'2-(Pf- Pm ) ,

where a has dimensions 8f 1/area. Equation (3) is often

referred to as the "quasi-steady-state" approximation

(Chen, 1989). This terminology follows from consider-

ation of the problem in which there is an instantaneous

change in the fracture pilessure pf, which serves as the

boundary condition for the matrix block, which we assume

here to be a sphere of ra•lius am· Differentiation of the

most-slowly-decaying Fou•ier component in the expression

for the average pressure, which is the dominant component

at large times, leads to an Jquation of the same form as Eqs.

(2) and (3), with a = 7:2 1 a•n . Other matrix block shapes,

such as slabs or cubes, lead to long-time behavior governed

by similar equations, but with different expressions for a

(see Zimmerman et al., 19938).

NONLINEAR COUPLING EQUATION

(1) An exact coupling term could be developed in terms

of the step-function response of a single spherical matrix

block by using the convolhtion principle. This would then

require the calculation of convolution integrals for each

fracture gridblock at each • time step and would also require

the storage of past values of the matrix pressure. Pruess

and Wu (1989) and Dykl•uizen (1990) improved upon the

quasi-steady-state model by approximating flow in the ma-

trix blocks with trial functions that satisfy the boundary

conditions and global mass conservation. We have taken

(2)

(3)
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the somewhat different approach of utilizing a nonlinear
ordinary differential equation that, in some sense, approxi-
mates the linear partial differential equation that actually
governs Pm· This equation, first proposed by Vermeulen
(1953) in the context of ion-exchange chromatography, is:

apm•mcm-8t
= X2km •Pf - Pi )2 -(pm- Pi )2

2#al Pm - Pi

where Pi is the initial pressure. When Pm is close to Pf, Eq.
(4) reduces to Eq. (3) and is therefore accurate in the long-
time regime. We have also proved that Eq. (4) is very
accurate in the small-time limit for arbitrary fracture-pres-
sure variations Pf (0 (Zimmerman et al., 1993a).

Equation (4) has been tested under situations in
which the fracture pressure, which serves as the boundary
condition for the matrix block, is a known function of time,
thereby isolating the matrix pressure response from that of
the overall reservoir. Figure 1 shows the mean matrix
block pressure for the case when the fracture pressure in-
creases abruptly from Pi to Po at t = 0. The solution to Eq.
(4) in this case very closely approximates the exact solu-
tion, whereas the prediction of the Warren-Root method,
Eqs. (2) and (3), is not accurate until the process is nearly
complete. The nonlinear Eq. (4) was also found to be more
accurate than the Warren-Root method for ramp-function
and other types of boundary conditions (Zimmerman et al.,
1993a).
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Figure 1. Average matrix pressure in a spherical block that is
subjected to a step-function increase in pressure at its outer
boundary. [XBL 927-1550]

DUAL-POROSITY SIMULATIONS
After verifying that Eq. (4) accurately predicts the

mean matrix pressure under a wide variety of boundary con-
ditions, we then incorporated it into the simulator TOUGH
(Pruess, 1987) as a fracture/matrix coupling term. In this
modification to TOUGH, Eqs. (2) And (4) are used in each
fracture gridblock and at each time Atep to calculate the mass

(4) interaction term Q. The solution t1§ the first-order ordinary
differential equation (4) is carried oilt in a fully implicit man-
ner, so as to be consistent with TOUGH and to avoid numeri-
cal instabilities. When performing Leservoir simulations with
this modified version of TOUGH, each computational
gridblock represents an element of the fracture continuum,
with the fracture/matrix flow interaction computed from Eqs.
(2) and (4). We have verified thet accuracy of this new ap-
proach by comparing its predictions against those of a MINC-
type simulation (Pruess and Narashnhan, 1985), in which the
matrix blocks are represented by nested concentric
gridblocks. As an example of th.• use of the new method,
consider flow from a boundary tliat is maintained at a con-
stant pressure Po, into a semi-infinite fractured formation that
is initially at pressure Pi. The 13,ermeabilities are taken as
4- 10-15 m2 and km = 10-18 m2, the porosities as *= 0.001
and 0m = 0.1, and the matrix blo•k radii as am = 1 m. The
temperature is 20°C, and the boundary and initial pressures
are Pi = 10 MPa and Po = 11 MPal

The flow rate into the fomiation is shown in Figure 2.
In the case labeled "MINC- 1 shi•ll," each matrix block was
represented by a single computational cell; this is a numerical
implementation of the Warren-RBot equation (3). In the case
labeled "MINC-10 shells," each matrix block was discretized
into 10 concentric shells. All th•ee computations predict the
correct pressure response in the short- and long-time limits,
when Pf = t-1/2. In the intel:mtidiate-time regime, when the
matrix blocks near the inlet are being filled, the Warren-Root
method incorrectly predicts Pf= constant, whereas the new
method correctly leads to the known (Nitao and Buscheck,
1991) t-1/4 pressure dependence. The MINC solution be-
comes more accurate as the number of shells increases and
eventually approaches the solution obtained using our new
method. The agreement with the finely gridded MINC solu-
tion serves to validate the new method.

The computational time required for simulating a
given problem with a code such as TOUGH grows linearly
with the number of computatibnal cells, since most of the
computing effort consists in inverting a sparse matrix by
Gaussian elimination. Since the nonlinear coupling equa-
tion removes the need for discretizing the matrix blocks,

1do the number of computational I gridblocks can be decreased
by about a factor of N, where N is the number of MINC
shells used in each gridblockt This would be expected to
lead to a proportional decreaset in CPU time. For example, in
the simulations shown in Figure 2,14 fracture gridblocks and
1 boundary gridblock were used to simulate flow into the
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Figure 2: Flow rate into one-dimensional fractured formation un-
der cons•ant-pressure boundary conditions. Matrix and fracture
properties are as described in text. [XBL 936-884]

semi-infihite formation when using the new method. The
MINC-10 shell simulation therefore used 155 computational
elements: 1 boundary element, 14 fracture elements, and
14 x 10 =1140 matrix elements. The decrease in the number
of complitational elements afforded by the new method was
therefore •9090, and the savings in CPU time was in fact 88%.
The slight difference is probably due to the small amount of
computational work needed to solve Eq. (4).

DISCUSSION
The• method described above for modeling the flow

of a sing16-phase fluid between a matrix block and the sur-
rounding fractures can also be used to model heat conduc-
tion, sinca both processes are governed by the diffusion
equation. 5 This analogy was pointed out by Pruess and Wu
( 1989), who used the integral-method approach to model
both phenbmena. We have extended our nonlinear cou-
pling equation approach to heat conduction (Zimmerman et
al., 1993b• and also to two-phase processes in which the
liquid is intmobile (Zimmerman, et al., 1993b). In the latter
case, the fluid flow can be modeled by a single diffusion
equation bl' introducing a "pseudo-compressibility" for the
two-phase Imixture (Grant and Sorey, 1979). We are cur-
rently working on extending this approach to two-phase
flow proc«ses in which both phases are mobile.
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