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The Transformational Decomposition (TD) Method for

Compressible Fluid Flow Simulations

G. J. Moridis and D. A. McVay'

In transient flow through porous media, the Partial

Differential Equation (PDE) to be solved is

ap
V· (kVp) =CT-+q,

Bt

where p is the pressure, k is the permeability, q is the

source or sink' flow rate, t is the time, CT = 0#CL, 0 is the

porosity, and 11 and CL are the fluid viscosity and com-

pressibility, respectively. Equation (1) is solved numeri-

cally in all but the simplest problems. The basic concept of

any numerical method is the substitution of a set of alge-

braic equations for the original PDE. Instead of solving for

the continuous smooth function p(JOY,Z,0, the space domain

(JOY,Z) is subdivided into N•) subdomains, and the time t is

discretized in NT time steps; NT sets of approximations •

of the solution are obtained at the Nz) predetermined points

in space.

Despite their power and flexibility, numerical solu-

tions have some serious drawbacks. Minimization of the

error introduced by the numerical approximation of the spa-

tial derivatives in the PDEs dictates the discretization of the

space domain into a large number of subdomains at all of

which solutions must be obtained (whether desired or not).

This increases the execution time requirements and requires

a large amount of computer memory. Accuracy and stabil-

ity considerations necessitate a large number of small time

steps between observation times; solutions must be ob-

tained at all these intermediate times, increasing the execu-

tion times and the roundoff errors.

The Transformational Decomposition (TD) method is

a new method that addresses the shortcomings of traditional

numerical techniques. The major advantage of the TD

method is that it requires no time discretization and a very

coarse space discretization to yield an accurate, stable solu-

tion that is semianalytical in time and analytical in space.

THE TD METHOD
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resulting equation is then subjected to successive Finite Co-

sine Transforms (FCT).

Each level of FCT eliminath one active dimension

(1)
until single-point equations remai•. The original PDE is

thus decomposed into much simp•er point algebraic equa-

tions, for which solutions are obtained in the transformed

space. In the Reconstitution stag•, solutions in space and

time are obtained by applying successive levels of inverse

transforms. The development of • the TD method in one

dimension presented here neglects • gravity and considers 0

a constant. The application of th9 TD method to multidi-

mensional systems with gravity and pressure-dependent 0' s

can be found in Moridis and McVay ( 1993).

There are two stages in the TD method, the Decom-

position stage and the Reconstitution stage. In the Decom- r
U

position stage, the original PDE is decomposed by using

successive levels of integral transforms. The first step in

this stage involves the application of the Laplace transform

to eliminate the time dependency of the original PDE. The *

Step 1: The Laplace Transform of the PDE

The boundary conditions in the 1-D problem depicted

in Figure 1 are

p'(x =0)=p'(4=0)=uo = 0,

(2)

p'(X = imax )= pyx3=X3 )=U3 40,

indicating no flow at the outermostiboundaries, and

W(xt =Xt )=ul (t), p;(X2 = X2 )=u2 (t), (3)

which describe internal boundaries that are unknown func-

tions of time. The subscripted xi (i - 1,2,3) denote local

coordinates; the global coordinates have no subscripts.

The Laplace transform of E•. (1) in the ith ( i = 1,2,

3) locally homogeneous subdomain of the 1 -D problem

yields

'., •»
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Figure 1. The TD method in one dimension. The quantities in

the boxes indicate the unknown internal boundaries. [XBL 935-
787]
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where s is the Laplace parameter, p(0) is the distribution of

p atr=0, W=L {p}, 4 -L{q}, and L{ } denotes the

Laplace transform of the quantity in the brackets. Equation

(4) is

Fi (xl

subject to the boundary conditions

=0)=Uo =0, 91(X)= X3 )=U3=0,

Wi (Xl - Xl • - Ul' 4'• (x2 = 0) = ElUl '

9'&(x2=1(2 )= U2' 45(20=0)=22U2'

where

and Ei

'Fi -L{p; =dpi/dxi}, Uf=L{ue (t)} (f =0,...,3),

= ki /ki+1.. These boundary conditions incorporate

the tangent law at the boundaries (continuity of fluxes).

Step 2: The Finite Integral Transform

The FCT of Eq. (4) yields

kl•- n•2 ei+(-1)nwix-Tio•-CTsei

where

xi f ngrx, 1 .
etcs,n)= fc{4'i}= ST, cosl-x,-)drt

The flexibility that Eq. (9) affords is obvious, as it

(4) allows the positioning of wells anywhere in the

subdomains. Equation (7) then yields

ei = criwi, Bo + biwi,BX + ci,

where

-rL
5) at (s, n)= - 1 2, bi(s,n)=(-1)n+lai,

nz + £Oi

' 07 6 (0) 4£· Ti2
6) Ci -CiCS, n) = - 2

42 + mi S Ai n2 + 07 '

Xi I·ETS-
Ti = -•-' COi = Ti (Ii, (Ii - •1|1 -11

Equation (10) is a simple, single-point algebraic equation,

and represents the decomposed form of the original 1-D

PDE. If both W;•Bo and TiBX are known (as in the case

of a homogeneous system), the decomposition stage ends

here.

Step 3: The Internal Boundary Conditions

=-CTA. (0)+44 (7) In heterogeneous systems with multiple subdomains,

the internal boundary conditions must be determined next.

The pressures being equal on both sides of the boundary

between subdomains 1 and 2 in Figure 1, 91 (xi = Xl ) =

72 (X2 - 0). Applying the inverse FCT on the governing

equations in the two subdomains gives

', (8)

=fc{pi(0)}, qi=fc{qi}, 4';O - T;•Xi - 0•,

= 91(xi = X• ), and fc{} denotes the FCT of the

quantity in brackets. Note that pi(0) need not be a constant;

any known function of xi for which an FCT exists is accept-

able. • As for the source/sink. term & , if • 00 for

Xib •1 Xi f Xie (see Figure 1 ), then

1 414 F . f nxxie ) 0 C nxxib 11
1-1 sinl- •-sinl -11

0 = 1 nAL C Xi j C Xi. 3]

•••Xie- Xit,)

n>0

1 2A ( n,EX, 1
_ei(s, 0)+-2,@1(s, n)cosi- 1
Xi Xin=l ( Xi Y

1 2 A (nxo)
-x-e2(s,0)+-ri,e2(s,n) cosl -•,

A2 n=1 • X2

from which we obtain the boundary equation

FlUO + Glul + H1612 - Ri.

(9) Closed forms for F, G, H, and R are obtained as

n=0,
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CTSWi = -CTpi (0) + 4i,

(10)

( (11)

(12)
(

and

(13)

(14)



1
Fl =

at sinh(,rel ) '

1 4
Gl = 1

al tanh(;ret ) 02 tanh(lr(02 ) '

1
Hi=

02 sinh(,ra)2) '

Rl =
r2c - rtc

S

42 1 [sinh((02'r- 02X2b•-sinh((021f_ a2X20••

124[ sinh(<02;r) ]

1 41 1 [sinh(aiXie )-sinh(aixib )•

11 • L sinh(w110 J

An analogous equation is obtained from subdomains 2 and

3. For any subdomain i other than the first, the numerator

of Fi must be changed to Ei-1. Since Uo = U3 = 0, the

unknown Ul and U2 are readily obtained from the two

boundary equations. In general, if there are N subdomains

with locally homogeneous properties; these define N+1

boundaries of which two (the outermost) are known, and

the remaining NB=N-1 are the internal unknown bound-

aries. Writing the resulting NB simultaneous equations in a

matrix notation, we have

- - -
MvUV = Rv and Uv = Mi:1Rv'

where M is the coefficifnt matrix, R is the "known" right-

hand side vector, and U is the vector of the unknown con-

ditions U = L{W'} at the internal boundaries. Values for

the Laplace parameter s for an observation time t are pro-

vided by the Stehfest (1970) algorithm as sv -

(ln 2/t) v, v =1,...,Ns. Optimum values for Ns were dis-

cussed by Moridis et al. ( 1991). Steps 1 through 3 repre-

sent the Decomposition stage. The Reconstitution stage is

described in Steps 4 and 5.

Step 4: The Laplace Domain Solution

Once the Uv becomes known, then the Tv at any

point xt within a subdomain i with boundaries U• and

Ug+1 is given by the inverse FCT as

Wi(sv,xe ) = aiTU4 (v)+ bill/&+1(v)+ CiT,

where

air = Ei-1,5 cosh((Dilr- aixt ),

biT = -Fl cosh(aix£),

di 1 •sinh[mix- ai(Xi,1 +xt )-1
CiT =

21, (72 L sinh(mix)

• sinh[mix- ai(Xie+XE)1

sinh(/Dix)

sinh[(oi ;r - ai(Xib + xf )]

sinh((Dix)

sinh[toix- ai(Xib+Xt)11 • ric

sinh(mix) j S.

Step 5: The Solution at Time t

To obtain a solution at a time t at a number of desired

points x• , all vectors Tv,v=1'...,Ns are needed. Using

the Stehfest algorithm, the unknown vector p at time t is

computed as

)

In 2 3*
p(t) =- 3 Wv ' WV,

t
V=1

where the terms Wv are constant Because of its formula-

tion, the TD method provides seinianalytical solutions that

are fully differentiable and integi•able; continuous velocity

fields are thus easily determined, and mass balance calcula-

tions over the subdomains are simple.

VERIFICATION

The test problem used for verification involves flow

to a well located at a vertical fracture of length L (perpen-

dicular to the x axis) and depth h in a rectangular (1-D)

reservoir. The TD solution is compared with FD solutions,

as well as with the analytical solution given by

(21)

(22)

(23)

(19)

(24)

(20

(25)
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PD=L-l{WD}, WD=Hl+H2,

where

�036p(-"D1•)
Hl =

s'·5•1 -exp{-2XD 47}j '

exp[(x,D -2Xl))·El
Hl = s'·5•1 - exp•-2XD •)1 '

PD -(Pi--P••k•A-•qU•, tD •(kt/A01LCL ), and ID -
CxNIX). Here X is the length of the reservoir, and
A=Lxh.

Two subproblems are investigated. In Problem la we
obtain the TD solution using the equation for a single ho-
mogeneous domain (as specified). In Problem lb we test
the performance of the TD concept by subdividing the do-
main (5000 ft) into two subdomains (300 and 4200 ft) and
comparing the solution with the one from Problem la. The
two TD solutions are virtually identical, differing in the 8th
or 9th decimal place. This confirmed the validity of the
concept. All results correspond to both subproblems and
are presented together.

Figure 2 shows the TD solutions at a number of
times. The measure of the accuracy of the TD method is
given by Figure 3, which compares the TD results with the
analytical solution. The observed deviations are extremely
small, and the TD method is shown to be practically insen-
sitive to the size of the time increment (thus allowing an
unlimited time step).

Figure 4 compares the TD solution at tr• = 1000 (i.e.,
using a time step size of 533.35 days) with the FD solutions
obtained for various space discretizations. To minimize the
contribution of time-related truncation error to the FD solu-
tions, a very fine time discretization is used, requiring 543
time steps and 1117 matrix inversions. With an increas-
ingly fine space discretization, the FD solutions approach
the TD solution. The superiority of the TD is obvious, as it
is capable of delivering a more accurate solution with a
single (or none at all) algebraic equation (which has to be
solved Ns times) than an FD scheme, which needs to invert
1117 times a matrix of order 111. This reduces the compu-
tational effort by orders of magnitude.

In Figure 5 the TD method is compared with FD
solutions with increasingly fine time discretizations. To
minirnize the effects of space-related truncation errors, a

2 20
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Figure 2. The TD solutions of pb for various tD' s. [XBL 935-
788]

fine space discretization ( lll •gridblocks) is used. A pat-
tern similar to the one observed in Figure 4 is evident: with
an increasingly fine time discretization, the FD solutions
tend toward the analytical solutions and the TD solutions,
further attesting to the power •f the method. The TD solu-
tion exhibits a very small de•iation from the analytical so-
lution and is consistently superior to the FD solution. The
superiority of TD persisted leven when a very fine time
discretization (263 time steps, and a total of 541 matrix
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Figure 3. Absolute differences between the TD and the analytical
solutions. [XBL 935-789]
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Figure 4. Comparison of the TD with the FD solution for various
space discretizations. [XBL 935-790]

solutions) was used in the FD simulation. The correspond-
ing TD computational effort to achieve this level of accu-
racy is essentially trivial: either direct substitution into Eqs.
(22) through (24) at the desired time and location or (in the
case of the two subdomains of subproblem lb) solution of
the single-point algebraic equation (20) Ns times, followed
by the direct substitution.
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Figure 5. Comparison of the TD solution with the FD solutions
for various time discretizations. [XBL 935-791]

CONCLUSIONS
A new numerical method, the Transformational De-

composition (TD) method, was developed for the solution
of the nonlinear, parabolic Partial Differential Equation
(PDE) of transient, slightly compressible, single-phase liq-
uid flow through porous media. Because TD uses a
Laplace transform formulation, it eliminates the need for
time discretization and allows an unlimited time step size
without loss of stability or accuracy. By using Finite Co-
sine Transforms, the method drastically reduces the need
for space discretization, requiring only a small number of
large subdomains for an accurate solution. The TD method
provides semianalytical solutiohs in space and time by de-
composing the original PDE iibto a small number of alge-
braic equations and by equatink and solving for conditions
at internal boundaries. These Isolutions are fully differen-
tiable and integrable, allowing the determination of con-
tinuous velocity maps and easy: mass balance calculations.

With finer space and tim'e discretizations, the FD so-
lutions tend to the TD solution. The TD method provides a
solution generally more accurate than the FD solution.
This was expected because the elimination of the traditional
time and space discretizations }limit the truncation error.

The TD method may significantly reduce the com-
puter memory requirements because discretization in time
is not needed and a very coarse grid suffices for the space
discretization. Execution tin•es may be substantially re-
duced because smaller matrices are inverted in the TD
method, and solutions are obtained at the desired points in
space and time only, whereas in standard numerical meth-
ods solutions are necessary lat all of the points of the
discretized time and space domains.
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