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The Laplace Transform MultiQuadrics (LTMQ) for the

Solution of the Groundwater Flow Equation

G. J. Moridis and E. J. Kansa*

MultiQuadrics (MQ) is a true scattered-data grid-free

scheme for representing surfaces and bodies in an arbitrary

number of dimensions by using approximations given by an

expansion in terms of upper hyperboloids. It is continu-

ously differentiable and integrable, and is capable of repre-

senting functions with steep gradients with very high accu-

racy. Hardy (1971) first derived MQ to approximate geo-

graphical surfaces and magnetic anomalies, but it was

mostly ignored until Franke (1982) showed that MQ out-

performed 29 other interpolation methods. Micchelli

(1986) and Madych and Nelson (1988) provided the theo-

retical justification for the performance of MQ.

The extension of MQ to applications in the solution

of Partial Differential Equations (PDE) in computational

fluid dynamics is credited to Kansa ( 199Oa,b), who em-

ployed MQ to solve the advection-diffusion equation, the

von Neumann blast wave problem, and Poisson's equation.

He showed that MQ (1) yields excellent results with a

much coarser distribution of data points, (2) is an excellent

estimator of partial derivatives, (3) does not need any spe-

cial stabilizing treatment for instability and numerical dis-

persion, (4) is far more efficient and accurate than standard

Finite Difference (FD) schemes, and (5) is considerably

more flexible and robust than FD in the solution of the

traditionally troublesome problem of steep moving fronts.

Laplace transforms are a powerful tool in the solution

of PDEs, but their application was limited to simple one-

dimensional problems with homogeneous properties. By

combining traditional space discretization schemes with

Laplace transforms, Moridis and Reddell ( 1990,1991a,b,c)

developed a family of new numerical methods for the solu-
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tion of parabolic and hyperbolic •PDE' s. These methods

eliminate the need for time discretization of traditional nu-

merical methods while maintainitig their flexibility in the

simulation of heterogeneous systems with irregular bound-

aries. The method of Laplace Transform MultiQuadrics

(LTMQ) is based on the same concepts but uses MQ as the

space approximation scheme.

THE LTMQ METHOD

The governing PDE of transient groundwater flow is

8H
V·(K VH) =So-+Q,

8t

where K is the hydraulic conductivity, H is the piezometric

head, So is the specific aquifer storativity,

Q = q A(x) 469 4(z), q is th• volumetric flow rate of a

source or sink per unit volume, and 6c is the Kronecker

delta. The solution of Eq. (1) with the LTMQ method is

accomplished in the four steps described in the following

sections.

Step 1: The Laplace Transform of the PDE

For a homogeneous and anisotropic 2-D porous me-

dium, the Laplace transform of Eq. (1) expanded in Carte-

sian coordinates yields

82, 82,
K 1 K --SoAW-SoH(0)+-9,

x jx2 Y 82 A

(1)

(2)
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wherewhere A is the Laplace space variable, 9 = L{H}, and L{ }

denotes the Laplace transform of the quantity in brackets.

It sl•ould be noted that the analysis in cylindrical coordi-

nateq is entirely analogous.

Ste• 2: The MQ Scheme in the Laplace Space

1 Following Madych and Nelson ( 1986), we expand

the continuous function T in terms of MQ basis functions

and an appended constant, i.e.,

9(x•= ai + f &(x - xj)aj, (3)

N

wheret ,

2(x-xj )=g(x-xj)-g(x-xi ), j=2,...,N, (4)

g(* - •)= [(g-xif+cy-yj )2 + rj l"2. (5)

• c . )(j-1)/(N-1 )

r2= r211 -r•ax I , j=1,...,N , (6)
J minl .2 1

. min j

N is the number of basis functions (i.e., data points in

space), and rmax, rmin are input parameters (Kansa, 199Ob).

The set Af linear equations relating the expansion coeffi-

cients aj •o the set of discretized values Wi, 1 sii SNis

·vi =tgial . e
j=1

where Gi 1•= 1 and Gu = g (xi - xj) for 2 Sj 5 N. The terms

Gu represent the ith row of the coefficient matrix G. The

first and second partial derivatives of Wi with respect to x

are •c

(fT.ji=rl .a#il«·=i• age agii jai, (8)
C Ox j »1 8x J J 1 8x Ox

j=2\ ' j=2\

».1,- •••.9'}a, -f•3 '31}a,, (9)
' 1-2• j=2\

alg• 4 i 12 1 1
--1/2

-=Cgi-xj )[Cgi-xi ) -Flyi-Yj ) +rfj , (10)
Bx

82gil =
0,2

•2

<Xi - xj,1
·1

[cx - xi )2 + (y, - yi )2 + rj]

1-1/2
X [(4 - Xi )2 + CY, - yj )2 + rj ]

The partial derivatives with respect to y are obtained in

exactly the same manner. Substitution in Eq. (2) leads to

the matrix equation

W8=b,

where the elements.of the fully populated coefficient matrix

W and the vector b are

Wit =-sol,

82•ij 02g-ij
Wij = Kx ar2 1 Ky ay2 Sol#ij, for 2 5 j SN,(13)

bj =Q/A- SoH(0)ij, for 15 jEN ,

Step 3: The Solution in the Laplace Space

The MQ approximation of the PDE in the Laplace

space results in N simultaneous equations. Since the matrix

W is nonsingular for distinct points, the vector of the MQ

expansion coefficients a is given by

8 -W-1 b .

The computation of W, W-1, and b necessitates values for

the Laplace parameter A. For a desired observation time t,

A is provided by the first part of the Stehfest (1970) algo-

rithm as

1n 2
Av=-v, v=1'...,Ns, (15)

t
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where Ns is the number of summation terms in the algo-

rithm and Ns is an even number between 6 and 20. Solu-

tion of Eq. (15) returns a set of Ns vectors of the trans-

formed pressures av

a. =[w(Av)]-1 6,(Av ), v =1,...,Ns.

To obtain a solution at a time t, all vectors av,v= 1'...,NS

are needed, i.e., the system of simultaneous equations has

to be solved Ns times.

Step 4: The Laplace Domain Predictions

Once the av vectors are known, the Laplace space

solutions *v at the original xj, j = 1,..., N points are ob-

tained from Eq. (7). Then the transformed dependent vari-

able at any point xx in the domain of interest is computed

by direct substitution in the MQ Eq. (7).

Step 5: The Numerical Inversion of the Laplace

Solution

The vector of the unknown heads H at any time t is

obtained by using the Stehfest (1970) algorithm to numeri-

cally invert the Laplace solutions Wv, yielding

1 NS

H(t) =111X Vv *v ,
t

V=1

where the terms Vv are constants. The vector Wv may

include solutions at the original xj, j= 1,..., N points, pre-

dictions at another set of points xm k = 1,..., K, or both.

Inverting known functions, Stehfest (1970) deter-

mined the optimum Ns = 18 for double precision variables.

However, Moridis and Reddell ( 1991 a) determined that the

performance of Laplace transform based numerical meth-

ods is practically insensitive to Ns for 6 5 Ns S 20.

The solution in the Laplace space removes the need

for time discretization and eliminates the stability and accu-

racy problems caused by the treatment of the time deriva-

tive. An unlimited time step size is thus possible without

any loss of accuracy. Owing to the absence of a time

truncation error, LTMQ offers a stable, nonincreasing

roundoff error irrespective of the time of observation tobs'

because a single solution (involving Ns matrix inversions)

is required, with a At = tobs· On the other hand, in a stan-

dard MQ method or any other traditional numerical

method, solutions must be obtained at all the intermediate

times of the discretized time domain, requiring longer ex-

ecution times and continuously accumulating roundoff er-

ror in the process.

The performance of the LTMQ method was evaluated

in the solution of the problem of transient flow into a homo-

geneous and anisotropic aquifer with a fully penetrating well

and constant discharge conditions. The LTMQ solution was

16) verified through comparison with the analytical solution

(Papadopulos, 1965), as well as the solution obtained from a

standard implicit FD simulator. The origin of this 2-D, infi-

nite-acting system is placed at the well. Assuming that the

axes of the Cartesian system coincide with the principal axes

of the permeability tensor, the piezome•ric head distribution

at t = 20 days is predicted along the x =:1 axis, i.e., at an angle

of 45° from the x axis. Only one-quarter of the infinite do-

main O.e., x in [0,=), y in [O,=)) needs to be simulated in

LTMQ and FD. For the LTMQ solutio•, N = 35 and Ns= 8.

A total of 625 gridblocks was used in the FD simulation.

Figure 1 presents (1) the analytical sofution, (2) the LTMQ

solution, 0) the FD solutions, as well as (4) relevant informa-

tion on the parameters used in this simulation. It is obvious

that the LTMQ method produces an accurate solution, a fact

indicated by its virtual coincidence with the analytical solu-

tion and the FD solution for a large number of small Ms.

SUMMARY AND DISCUSSION

A new numerical method, the Laplace Transform

MultiQuadrics (LTMQ) method, has been developed for

the solution of the diffusion-type parabolic Partial Differen-

tial Equation (PDE) of groundwater now through porous

17) media. LTMQ combines a MultiQuadrics (MQ) approxi-

mation scheme for the solution of thci PDE with a Laplace

transform formulation for the elimination of the need for

time discretization. The use of MQ in the spatial approxi-

mations allows the accurate descri•tion of problems in

complex porous media with a very limited number of

gridded or scattered nodes. The Laplace transform formu-

lation eliminates the time dependency of the problem and

consequently the need for time discretization. An unlim-

ited time step size is thus possible without any loss of accu-

racy. In a 2-D test problem for whicli an analytical solution

exists, an excellent agreement betwe•n the LTMQ, the FD

and analytical solutions was observed. Owing to its formu-

lation, the LTMQ method requires s8lution of the simulta-

neous equations Ns times and a linear combination of the

resulting Ns solutions. Compared with a standard FD

method, LTMQ requires drastically fewer (at least one or-

der of magnitude) gridded or scattered nodes for the same

level of accuracy but produces fully populated matrices (as

opposed to sparse banded matrices irt FD). Execution times

may be reduced by orders of magnitude because solutions

in the LTMQ scheme are necessary only at the desired

observation times, whereas in standard numerical and MQ

schemes solutions are needed at all • the intermediate times

of the discretized time domain.

VERIFICATION AND EVALUATION

(

(
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Figure 1. Comparison of the LTMQ solution to the analytical and the FD solutions along the x=y
axis in the test problem. [XBL 935-786]
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- Analytical solution-o- LTMQ sold on (Ns 8 N 35)
FD solution At 01 dayFD solution At 1 0 day
FD solution At 2 0 days

3Q 2500 m /dayZ 50 m So 0 0003 1/m
Kx 20 In/day Ky 1 m/day

Time = 20 days


