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TOUGH Simulations of Updegraff's Set of Fluid and Heat Flow Problems

G. J. Moridis and K. Pruess

Under the sponsorship of the U.S. Nuclear Regula-

tory Commission, Sandia National Laboratories (SNL) is

developing a performance assessment methodology for the

analysis of long-term disposal of High-level Radioactive

Waste (HRW) in unsaturated welded tuff (the only poten-

tial host rock presently under consideration by the U.S.

Department of Energy). As part of this effort, a compari-

son study of three simulation codes modeling strongly

coupled mass and heat flow in unsaturated porous media

was conducted (Updegraff, 1989).

The three codes evaluated were (1) TOUGH, de-

veloped by Pruess (1987) at Lawrence Berkeley Laboratory

(LBL); (2) NORIA, developed by Bixler (1985) at SNL;

and (3) PETROS, developed by Hadley (1985) at SNL.

The capabilities of these codes were tested using 1-D and

2-D problems selected to represent a wide variety of flow

systems of different levels of complexity and numerical

difficulty, ranging from simple, uncoupled processes (such

as 1 -D infiltration) to strongly coupled processes (such as

2-D heat-driven flow and vaporization).

The SNL report (Updegraff, 1989) stated that all

three codes had serious weaknesses and recommended that

a new code be developed. The performance review of

TOUGH ranked it as the best of the three codes and con-

cluded that it was capable of solving most of the problems.

However, Updegraff (1989) concluded that TOUGH exhib-

ited significant limitations, the most severe of which were

difficulty or inability to converge in certain problems, sig-

nificant numerical dispersion in heat transport problems,

and large core storage and execution time requirements.

The purpose of this study was to address the issues

raised by Updegraff (1989) in the SNL Report. All the test

problems examined in the SNL study were reinvestigated.

These included five verification problems (for which either

analytical or numerical solutions exist) and three validation

problems (for which experimental results are available). In

our approach, we first attempted to reproduce Updegraffs

(1989) results using the original input data for the eight

problems. We then corrected and modified the input data

and run TOUGH using the modified inputs. Finally, the

new simulation results were discussed.

We demonstrated that (1) the difficulties encountered

by Updegraff (1989) can be overcome by careful con-

sideration of the physical processes modeled, (2) TOUGH

is capable of handling all the test problems and obtaining

correct answers by suitable preparation of input data, with-

out any code modification, and (3) in all test problems

TOUGH produces very efficient runs that cover the entire
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desired simulation periods. A detailed presentation of this

study can be found in Moridis and Pruess ( 1992). In this

summary, we discuss two of the test problems: a validation

problem of radial heat transport, add a verification problem

of a heat convection cell. By dnalyzing the difficulties

encountered by Updegraff ( 1989), we hope to demonstrate

a set of sound simulation principles and practices to be used

in the application of TOUGH.

RADIAL HEAT TRANSPORT

The verification test problem of radial heat transport

was originally solved analytically by Avdonin ( 1964), and

was later described by Ross et al. ( 1982). Cold water is

injected into a semi-infinite, high-temperature aquifer. The

overburden and underburden are, impermeable to mass and

heat flow, acting as no-flow and adiabatic boundaries. The

TOUGH predictions of the temperature distribution were

sought after t = 4,tax = 109 sec ( i.e., 32 years) of cold water

injection.

Updegraff' s Approach and IResults

Updegraff (1989) discreti:•ed the space domain in 252

unequally sized gridblocks, which included two boundary

gridblocks. A very large volume was assigned to the

boundary gridblocks, thus ensuring constant boundary pres-

sures and temperatures throughout the simulation. The

boundary gridblocks were assigned constant pressures and

temperatures. The initial pressure distribution was deter-

mined using a logarithmic pressure function (Updegraff,

1989). Instead of a direct injecdon, the prescribed pressure

differential on the boundaries created an influx that resulted

in an equivalent system.

Constraining the computation to 5 3000 time steps,

Updegraff (1989) could only •imulate the first 1.5x 106 sec

of this problem. He concluded from this that TOUGH was

unlikely to simulate the required period of t,nar = 109 sec

within a reasonable time, and 1 compared the numerical and

the analytical solutions at t =•106 sec. His comparison in-

dicated that the TOUGH solution showed limited numerical

dispersion and lagged behind the analytical solution, a dis-

crepancy he assigned to the temperature dependence of the

water viscosity and density in TOUGH (unaccounted for in

the analytical solution).

Examination of the report and input file revealed the

following problems: (1) The correct analytical solution at

t = 106 sec bore no resemblance to the analytical solution

shown by Updegraff ( 1989); (2) incorrect water properties
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had been used for the computation of the analytical solu-
tion, thus producing an incorrect analytical solution and
causing conflict with the correct water property data
"hardwired" in TOUGH; and (3) an excessively fine
discretization had been used immediately next to the well
bore. Such a fine discretization can produce severe loss of
accuracy when calculating interblock flows from small dif-
ferences in the pressure of adjacent gridblocks, and it in-
creases the size of the system of linear equations to be
solved without resolving additional physics. The inability
to reach the desired observation time of tmax = 109 sec was
traced to the exceedingly fine space discretization.

Modification and Results
We reduced the number of gridblocks from 252 to

127, which considerably decreased the execution time. In
our data set, cold water was injected at the prescribed rate
directly into the gridblock next to the wellbore. This ap-
proach was more physically correct and significantly re-
duced the size of the input file. We evaluated the ability of
TOUGH to yield an accurate solution at t = 106 sec (used
for comparisons by Updegraff) and t = tmax = 109 sec
(specified by the problem). Both upstream and midpoint
weighting schemes were considered, for a total of four in-
put files. These produced very efficient runs, which did not
suffer from any of the shortcomings reported by Updegraff
( 1989).
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This problem has a "similarity solution" in terms of
the variable ,2/t (Doughty and Pruess, 1990; 1992). In
Figure 1 we plot the analytical solution, the two TOUGH
solutions at t = 106 sec (with th6 fine time discretization),
and the two TOUGH solutions at t = 109 sec versus the
similarity variable r2/t. An examination of the results re-
veals that
1. TOUGH efficiently simu•ated the radial heat trans-

port problem. The number of time steps to reach 106
and 109 sec was 27 and 1(131.

2. The TOUGH results are consistent with the r•/t in-
variance that is known to exist in this problem. At
tmax = 109 sec, the two TOUGH solutions virtually
coincide with the analytieal solution. The midpoint-
weighted solution is slightly more accurate, but the
difference from the upstream-weighted solution is
imperceptible. Similar observations are made for the
solutions at t = 106 sec.

THE CONVECTION CELL EXPERIMENT
The second validation problem is a laboratory con-

vection cell Reda ( 1984). A porous medium consisting of
glass beads with an average diameter of d =0.65 mm fills
the annular region between th• two vertical concentric cyl-
inders. Application of heat generates a thermal buoyancy
force, giving rise to the devdlopment of convection cells.

10-4 10-3

Figure 1. The analytical and numerical similarity solutions to the radial heat flow problem. [XBL
935-784]
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Modification and ResultsNumerical predictions are compared with temperature mea-
surements at the bottom and top of the heating element at a
time t = 105 sec.

Updegraff' s Approach and Results

For our simulation, we used a grid with a sufficiently
fine discretization in the all-important region near the
heater and created two new dataisets: the first accounted for
permeability-enhancement effects; the second neglected
them. A very large volume and Apecific heat were assigned
to the top permeable boundaryl of the model to maintain
constant pressure and temperatore. The gridblocks at the
outer radial boundary had a verl, low porosity, zero perme-
ability, and a very high specific heat to force strict "no
mass-flow" boundaries while rbaintaining a constant tem-
perature. The gridblocks assiglied to the heater had a very
low porosity, a large compressibility, zero permeability to
impose a "no-mass-flow" boun'clary, and the properties of
cast iron.

We evaluated the performance of TOUGH by com-
paring the simulation results (Figure 2) over time to the
experimental measurements (Reda, 1984). The maximum
simulation time was tmax = 105 sec. The following conclu-
sions were drawn:

1. Both input files produced very efficient runs, cov-
ering the simulation period in 18ss than 40 time steps.

2. A very good agreement between experiment and
prediction was observed for the period of transient convec-
tion, as well as for the steady state. A very strong depen-
dence of temperature on the radial distance was evident.

Updegraffs (1989) simulation assigned a very large
volume to the gridblocks at the top boundary to maintain a
constant temperature and pressure. The outer cylinder
boundary gridblocks were assigned a very small volume
and a very large specific heat in order to model zero mass
flux and constant temperature boundary conditions. Zero
mass and heat flux boundaries were assigned along the bot-
tom and the left side of the grid.

Updegraff was unable to simulate this experiment,
obtaining results that significantly overpredicted tempera-
tures (by 15 to 30°C) while not exhibiting sufficient tem-
perature differentials between the top and the bottom of the
heating elements (less than 10°C, when the observed differ-
ence was 30°C). The reasons for Updegraff' s failure to
successfully simulate this experiment were traced to inad-
equate and/or inappropriate data inputs. More specifically:

1. The discretization in the radial direction was ex-
cessively coarse. Because of cylindrical geometry, large
temperature gradients are expected near the heater, and
convective effects would be concentrated within a short
distance from the heater. The original report on the experi-
ment (Reda, 1984) supported this expectation. Moreover,
Reda (1984) stated that the packing of the spherical par-
ticles against the heater surface led to important flow chan- 90-•
neling effects due to porosity and permeability enhance- 2
ment. These channeling effects were localized within :
5d = 3.25 mm. The radial increment Ar used by Updegraff 80-=
in this region was 20.96 mm; i.e., 6.45 times larger, com-
pletely overwhelming its effects, introducing very large :
discretization errors, and causing the large discrepancies -70-20between Updegraff' s TOUGH predictions and the experi- 6 2
mental data. 2 =

2. The assignment of small volumes to the outer 2 60 1,.boundary gridblocks to approximate the "no-mass-flow • 2
conditions resulted in a boundary with permeable connec- • :

50-=tions to the flow domain, which may have a noticeable
impact on predicted convection behavior.

3. Permeability enhancement in the immediate vicin- -40-=ity of the heater was not accounted for
4. The heater domain in Updegraff' s simulation was r

assigned porous medium properties, with nonzero porosity, 302
zero permeability in the r and z directions, and zero me- 1... 3
dium compressibility. This resulted in enormous pressures 102
because, with the constraint of zero permeability, the
gridblocks had no outlet and no compressibility other than
that of water. This problem was further exacerbated by the
poor selection of the location of the grid points at which the '
comparisons were made.

. '...'.1.....• , ''....1..... . ......14 68 2 4 68 2 4 68
103 104 105Time (sec)

Figure 2 Comparison of TOUGH predictions with experimental
data at the heater bottom (z/Ar =12 ) and top (z/Ar = 3). The bars
attached to the TOUGH curves indicate the predicted temperature
in the first radial element (i.e., dn the surface of the heating ele-
ment) [XBL 935-785]
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3. We found a significant difference between the

runs with and without permeability enhancement. Tem-

peratures predicted without permeability enhancement were

consistently higher both at the bottom and the top of the

heater. Without flow channeling, there was a somewhat

slower initiation of convection and a weaker convection

process at later times when steady state is approached.

4. Despite its apparent better agreement with mea-

surements (at least near steady state), it is inappropriate to

state that neglecting channeling effects produces more

accurate results because of the extremely steep temperature

gradients in the vicinity of the heater.

5. A significant dependence of temperature on the

vertical distance z was noticed (more pronounced near the

top than the bottom of the heateO, where even minute (i.e.,

submillimeter) changes in the position of the measuring

device can effect sizable temperature differentials. This

observation adds further perspective on the comparison be-

tween experimental and numerical results.

CONCLUSIONS AND DISCUSSION

TOUGH has performed well on a series of fluid and

heat flow problems that involved 1-D and 2-D dimensional

flows, with varying degrees of nonlinearity, coupling be-

tween fluid and heat flows, and complexity of boundary

conditions. These results substantiate the accuracy of the

physics model employed in the code and of the mathemati-

cal and numerical approaches used. The two-phase two-

component fluid and heat flow capability offered by

TOUGH, and the flexibility of the space discretization by

means of integral finite differences, make possible applica-

tions to a great diversity of flow problems on different

space and time scales (Pruess, 1990)

Key to successful application of TOUGH is a careful

consideration of the physical processes that are involved in

a given flow problem. In particular, space discretization,

time stepping, and interface weighting procedures need to

be carefully selected so that accurate results may be ob-

tained. Application of TOUGH (or, for that matter, of any

other two-phase fluid and heat flow code) without due at-

tention to these issues may result in poor (inefficient) per-

formance, inaccurate results, or both. An important aspect

of discretization is the interface and time-weighting proce-

dure. TOUGH was designed for robustness and stability in

difficult nonlinear problems with phase change and propa-

gating phase fronts. The appropriate weighting procedures

for such problems are fully upstream weighting in space

and "fully implicit" first-order backward finite differences

in time.

Some of the problems and limitations in TOUGH

with regard to ease of use and description of physical pro-

cesses that were noted by Updegraff (1989) were overcome

with the recently released successor code, TOUGH2

(Pruess, 1991; ESTSC, 1992). TOUGH2 is upward com-

patible with TOUGH, with additional capabilities and user-

friendly features; these include an internal version control

system, more convenient facilities for specifying boundary

conditions, and internal mesh processing and generating ca-

pabilities (used for mesh generation in Verification Prob-

lem 3 and Validation Problen•s 1 and 2). TOUGH2 offers a

multiple interacting continua capability (MINC) for frac-

tured media simulations, a simplified description of

Knudsen diffusion by means of a Klinkenberg factor for

permeability, and an ability to handle different fluid mix-

tures.

Further enhancements of process description, such as

a capability for multicompon•nt dispersion and diffusion in

multiphase flow, will be iAcluded in future releases of

TOUGH2. We also expect to release a set of efficient

conjugate gradient solvers f6r use with TOUGH2, which,

compared with the presently employed direct solution tech-

nique, will drastically shorten execution times for large 3-D

problems.
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The Laplace Transform MultiQuadrics (LTMQ) for the

Solution of the Groundwater Flow Equation

G. J. Moridis and E. J. Kansa�042

MultiQuadrics (MQ) is a true scattered-data grid-free

scheme for representing surfaces and bodies in an arbitrary

number of dimensions by using approximations given by an

expansion in terms of upper hyperboloids. It is continu-

ously differentiable and integrable, and is capable of repre-

senting functions with steep gradients with very high accu-

racy. Hardy (1971) first derived MQ to approximate geo-

graphical surfaces and magnetic anomalies, but it was

mostly ignored until Franke (1982) showed that MQ out-

performed 29 other interpolation methods. Micchelli

(1986) and Madych and Nelson (1988) provided the theo-

retical justification for the performance of MQ.

The extension of MQ to applications in the solution

of Partial Differential Equations (PDE) in computational

fluid dynamics is credited to Kansa ( 1990a,b), who em-

ployed MQ to solve the advection-diffusion equation, the

von Neumann blast wave problem, and Poisson's equation.

He showed that MQ (1) yields excellent results with a

much coarser distribution of data points, (2) is an excellent

estimator of partial derivatives, (3) does not need any spe-

cial stabilizing treatment for instability and numerical dis-

persion, (4) is far more efficient and accurate than standard

Finite Difference (FD) schemes, and (5) is considerably

more flexible and robust than FD in the solution of the

traditionally troublesome problem of steep moving fronts.

Laplace transforms are a powerful tool in the solution

of PDEs, but their application was limited to simple one-

dimensional problems with homogeneous properties. By

combining traditional space discretization schemes with

Laplace transforms, Moridis and Reddell (1990,1991a,b,c)

developed a family of new numerical methods for the solu-

* Earth Sciences Division, Lawrence Livermore National Laboratory, Liv-
ermore, California.
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tion of parabolic and hyperbolic PDE' s. These methods

eliminate the need for time discretization of traditional nu-

merical methods while maintaining tlieir flexibility in the

simulation of heterogeneous systems with irregular bound-

aries. The method of Laplace Transform MultiQuadrics

(LTMQ) is based on the same concepts but uses MQ as the

space approximation scheme.

THE LTMQ METHOD

The governing PDE of transient groundwater flow is

8H
V.(KVH)=So--+Q,

at

where K is the hydraulic conductivity, H is the piezometric

head, So is the specific aquifer storativity,

Q = q Oc(x) Oc(y) Oc(z) , q is the volumetric flow rate of a

source or sink per unit volume, and 6c is the Kronecker

delta. The solution of Eq. (1) with the LTMQ method is

accomplished in the four steps described in the following

sections.

Step 1: The Laplace Transform of the PDE

For a homogeneous and anisotropic 2-D porous me-

dium, the Laplace transform of Eq. (1) expanded in Carte-

sian coordinates yields

324' 827
K- 1 K..- = Sol'F - SoH(0)+•,

* BX2 Y Byl A

(1)

(2)
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