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characteristics of the produced fluids and interfer­
ence effects between wells have a'so been detected 
(Truesdell et al., 1984). 

The usefulness of fluid geochemistry and reser­
voir engineering studies, as well as electrical resis­
tivity, passive seismic, precision gravi.y, and 
ground-surface deformation surveys, for monitoring 
the behavior of the Cerro Prieto geothermal field 
under production has been discussed by Lippmann 
et al. (1983). 

SUMMARY 
Great advances have been made toward under­

standing Cerro Prieto. We hope that many of the 
studies initiated under the 1977-1982 DOE/CFE 
agreement will continue and add important new 
information as the field is expanded. For example, 
more needs to be known about the hydraulic proper­
ties of the sandy and shaly layers; the hydrogeologic 
model should be updated as new results and Held 
data become available; and the general monitoring of 
the behavior of the field should continue, especially 
as new areas come under production. 
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Mainly on the basis of dipmeter log data, Half-
man et al. (1984a) have modified and updated their 
geologic model of the Cerro Prieto field. The deposi-
tional environment of the geologic units controlling 
the subsurface flow of geothermal fluids has been 
established, and new faults and uplifts (contem­
poraneous or postdepositional) have been identified. 
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GEOLOGIC SETTING AND RECENT 
HISTORY OF THE AREA 

The Mexicali Valley is part of the Salton Trough, 
an actively developing structural depression that 
resulted from tectonic activity that has created a 
series of spreading centers and transform faults that 
link the East Pacific Rise to the San Andreas fault 
system. The Cerro Prieto field is associated with one 
of these spreading centers, where the crust is being 
pulled apart by right-lateral stike-slip movement 
along the Cerro Prieto and Imperial Faults (Lomnitz 
et al, 1970; Elders et al., 1972). 

During the early Pliocene (about 5 Ma b.p.), the 
present configuration of the Gulf of California began 
to develop by major crustal extension, splitting Baja 
California from the Mexican mainland (Saunders et 
al., 1982). At that time, the waters of the Gulf 
extended northward to about the present Salton Sea 
area. The propagation of Jie Colorado River delta 
into the Cen Prieto area began in mid- to late 
Pliocene (Ingle, 1980). 
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By late Pliocene, the southwesterly advance of 
the delta was essentially complete, resulting in the 
conversion of the Salton basin to a nonmarine depo-
sitional basin (Lyons and van de Kamp, 1980). By 
mid-Pleistocene time, the marine connection 
between the Gulf of California to the south and the 
Imperial Valley to the north was severed (Ingle, 
1980). 

GEOLOGIC AND HYDROGEOLOGIC 
MODELS OF THE CERRO PRIETO 

Halfman et al. (!984a) have developed five geo­
logic cross sections for Cerro Prieto (e.g., Figs. 1 and 
2) showing the distribution of sandstone, sandy-
shale, and shale lithofacies. After superimposing 
temperature profiles and well production intervals 
on these cross sections, they were able to identify 
two geologic units that largely controlled the subsur­
face flow of the geothermal fluids: Shale Unit O and 
Sand Unit Z. Shale Unit O is a thick, relatively 
impermeable, low-porosity body that locally forms a 
cap rock for the geothermal reservoir. This unit is 
classified mainly as a shale lithofacies group. Sand 
Unit Z, underlying Shale Unit O, contains thick, 
permeable, high-porosity sandstone beds that allow 
fluid circulation; it is the main stratigraphic unit of 
the geothermal reservoir. 

Figure 1. Schematic paleoenvironmental map for the 
deeper part of the Cerro Prieto section. Location of wells 
and cross section A-A'. [XBL 835-1804C| 

M: 

Figure 2. Lithoiacies cross section A-A', showing well locations, lithofacies groups, faults, temperature 
profiles, producing intervals, A/B contacts. Shale Unit O, Sand Unit Z, and arrows indicating direction of 
fluid flow. On the temperature profiles, the points corresponding to 300°C are placed under the location 
of the respective wells. The parts of the temperature profiles shown by heaw lines indicate temperatures 
of 300*C or greater. [XBL 828-10945A] 
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The hydrogeologic model discussed by Halfman 
et al. (1984a) shows that under natural conditions 
the geothermal fluids enter the Cerro Prieto field 
from the east at depths greater than 3000 m through 
Sand Unit Z. The fluids move westward through 
this unit, rising to shallower depths through fault 
zones and sandy gaps in overlying Shale Unit O. In 
the thick sandstones along the western margin of the 
producing field (west of well M-9), the geothermal 
fluids either mix with cold groundwaters or discharge 
to the surface as hot springs, mud volcanoes, and 
fumaroles. 

DEPOSITIONAL ENVIRONMENT OF 
CERRO PRIETO RESERVOIR ROCKS 

Critical to understanding the nature and charac­
teristics of the geologic units governing to a large 
extent the flow of geoiuermal fluids in the reservoir, 
in particular Sand Unit Z and Shale Unit O, is an 
understanding of the depositional environment of 
these rock units. This environment controls largely 
the overall lithology of the units and the continuity, 
thickness, and intercalation of their sandstone and 
shale beds, all of which determine the hydraulic pro­
perties of the units. 

Most researchers have first attempted to inti r-
pret the depositional environment of the unusually 
thick sandstones (> 900 m) penetrated by wells M-
96, M-3, M-6, and S-262 drilled along the western 
margin of the field (Marion) et al., 1977; Pnan, 1978; 
and Lyons and van de Kamp, 1980). 

A careful analysis of available dipmeter logs 
from 26 wells showed that the depositional environ­
ment of the thick sandstones, Shale Unit O, and 
Sand Unit Z was once part of a coastal system (Half-
man et al., 1984b). Along a west-to-east line, one 
would find, in succession, longshore current, shore­
line, and prelected embayment deposits (Fig. 1). 
The significant sandstone thicknesses penetrated in 
the western part of the field are associated with 
northward-flowing longshore currents in an actively 
subsiding basin. The subsidence of this basin prob­
ably continues today, as Cerro Prieto is located on 
an active spreading center, mentioned earlier (Lom-
nitz et al., 1970; Elders et al., 1972). Lyons and van 
de Kamp (1980) have shown from petrographic stu­
dies that the thick sandstones were derived from 
Colorado River sediments. Therefore, longshore 
currents must have been carrying sediments north­
ward to the Cerro Prieto area from an ancient 
Colorado River delta located to the south of the 
field. 

Interpretation of the dipmeter logs shows that at 
Cerro Prieto many of the deposits associated with 

the longshore currents were formed in flood-and-ebb 
tidal deltas. The dipmeter patterns corresponding to 
those deltaic deposits are similar to the distributary 
front patterns described by Gilreath and Stephens 
(1975). The dip patterns characteristically show 
high-angle dips decreasing to lower ones (about a 
10-20° span) over a depth interval of about 
15-30 m. A good example of an ebb-tidal deltaic 
deposit is shown between 1143 and • 350 m in tht 
dipmeter log for well M-96 (Fig. 3). The long axis of 
this deposit is oriented in a west-northwest direction. 
The general direction of the longshore currents is to 
the north, as evidenced by the northward dip pat­
terns betwen 1128 and 1143 m and between 1173 
and 1211 m (Fig. 3). Also shoATi in this figure are 
tidal flat deposits between 1158 and 1173 m. Other 
types of dipmeter patterns for these thick sandstones 
indicate shallow water (Gilreath et al., 1969) and 
river deposits (Schlumberger Limited, 1981) associ­
ated with a longshore current environment. 

Once the depositional environment for the thick 
sandstones found in the western region of the field 
was established, it became easier to identify the 
environment of deposition of the sediments of Shale 
Unit O. The dipmeter log for well M-I50 from 1524 
to 1859 m illustrates some of the typical patterns for 
Shale Unit O (Fig. 4). These dips show a repeating 
pattern of high- to lower-angle dips, indicative of 
foreset bedding resulting from southwest- to 
northeast-flowing currents. The very orderly pattern 
shows that little if any reworking of the sediments 
occurred. To preserve the foreset beds, rapid deposi­
tion and burial must have occurred. The gamma-ray 
log for Shale Unit O indicates typical thin 
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Figve 3. Dipmeter log for well M-96, representing an 
ebb-tidal delta (1143-1150 m), tidal flat (1158-1173 m), 
and longshore current (1128-1143 m and 1173-1212 m) 
deposits. [XBL 842-95921 
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Figure 4. Dipmeter log for well M-150, representing foreset beds from 1524 to 1859 m. |XBL 842-
9595) 

interbedded sandstone and shale layers. Considering 
that this unit was deposited in an area between the 
longshore currents to the west and the mainland to 
the east and that its thin interbedded sandstone and 
shale layers were laid down in a very quiet and 
undisturbed environment, it can be inferred that the 
sediments were probably deposited in a protected 
embayment, as shown in Fig. 1. 

Sand Unit Z is also composed mostly of foreset 
beds deposited in a protected embayment. However, 
th<? sandstone and shale beds of the upper portion of 
Sand Unit Z are generally much thicker than the 
beds of the lower portion of Shale Unit O. The 
source of sediments for both units was the Colorado 
River (Lyons and van de Kamp, 1980). Moreover, 
the dipmeter patterns of both units indicate that the 
energy of the currents transporting the sediments 
into the protected embayment must have been simi­
lar. Therefore, the greater thickness of the sandstone 
and shale beds may be due to alternating high and 
low energy conditions of the Colorado River over 
longer periods of time and/or to erosion by the 
Colorado River through thicker sandstone and shale 
source rocks. 

By establishing the characteristics of the coastal 
environment of deposition of the sedimentary rocks 
forming the Cerro Prieto geothermal reservoir and 
its (discontinuous or local) cap rock, it is easy to 
explain the sandier nature and eventual disappear­
ance of Shale Unit O in the western part of the field. 
The sandier western portion of Shale Unit O (from 
well M-10 to M-9) represents the beginning of a tran­
sition from protected embayment deposits (to the 
east) to longshore current deposits (to the west). The 
sandy-shale group within Shale Unit O (between 

wells M-5 and M-29) is permeable enough to allow 
somi; geothermal fluids to flow westward through it. 

The thick and highly permeable deposits associ­
ated with longshore currents bounding the reservoir 
to the west lets westward-moving hot fluids mix with 
(colder) groundwaters, thus limiting the horizontal 
extent of tne geothermal reservoir. Therefore, new 
wells should he drilled east to these thick sandy 
deposits, preferably south and southwest of NL-1, 
which is near the gcothermal heat source. 
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Lawrence Berkeley Laboratory, in cooperation 
with the State Electric Power Works of Iceland 
(SEPW) and the Icelandic National Energy Authority 
(NEA), conducted a comprehensive modeling study 
of the Krafla geothermal field in Iceland. The study 
consisted of four tasks: analyzing the well-test data, 
modeling the reservoir system in its natural (unex-
ploited) state, determining the generating capacity of 
the different reservoir regions, and modeling the well 
performance on the basis of different exploitation 
schemes. 

For detailed modeling of a geothermal system, 
one must know or estimate many parameters that 
characterize the system. One of the most important 
parameters is the transmissivity, kH, of the reservoir, 
which represents the relative ease of fluid movement 
within the reservoir. The existing well-test data from 
Krafla wells were analyzed to yield the transmissivity 
distribution in the reservoir. A modeling study of 
the natural state of Krafla reservoir was undertaken, 
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because this can provide important constraints on 
reservoir parameters. 

The final two tasks deal with the generating 
capacity of the reservoir and the well performance. 
We develop a simple lumped-parameter model for 
approximate estimation of the generating capacity of 
the field, which allows for natural recharge and rein-
jection. Numerical methods are then employed in a 
two-dimensional areal simulation of the Krafla sys­
tem. Finally, a quasi-three-dimensional model is 
developed in which all wells are represented indivi­
dually. The model achieves an approximate match 
of past production rates and enthalpies of the wells. 
It is then used to predict future well behavior (flow 
rates and fluid enthalpy) and overall reservoir deple­
tion under various reservoir management schemes. 

The present article gives a rather brief summary 
of the modeling work; a more complete description 
is given in Bodvarsson el al. (1983a). 

THE KRAFLA GEOTHERMAL FIELD 
The Krafla geothermal field is located in the neo-

volcanic zone in northeastern Iceland. The zone is 
characterized by fissure swarms and central 
volcanoes. The Krafla field is located in a caldera (8 
X 10 km) with a large central volcano, named 
Krafla. The field has been under development for 
the past decade. At present, 23 wells have been 
drilled at the Krafla field (Fig. 1). In the "old" well-
field (west of the Hveragil gully), the wells have 
encountered two major reservoirs (Fig. 2); the upper 
reservoir (200-1000 m depth) contains single-phase 
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