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1. In t roduct ion  

Reinject ion of spent geothermal f l u i d s  becoming a common means 

1. In genera l ,  i n j e c t i o n  of geothe 1 br ine  has been .. 
out ,  major problems whenever the  f l u i d  i s  in j ec t ed  

l a rge  f r a c t u r  Descr ipt ions of long-term in j ec t ion  have been made i n  

Chasteenl descr ibes  the  in j ec t ion  at  t he  Geysers f i e  ous repor t s .  

and a t  Valles Caldera (Baca). 

have in j ec t ed  a t  t h  eyse r s ,  and during long-term tests a t  Baca ~ 

thousands of tons of produced geothermal f l u i d s  have been r e in j ec t ed .  

Since 1969, mi l l i ons  of tons of condensate 

, Eina r s son ,e t  al3, and Witherspoon4 reported i 

a t  Ahuachapan, E l  Salvador, where over sev 

been . in j ec t ed  s ince  1970. 

f l u i d s  a t  Otake, Japan. 

by a l l e r  s c a l e  d i s p  

taken place i n  Hilo,  H a w a i i ;  Lardere l lo ,  I t a l y  

Cal i fornia6.  

i n  e x i s t i n g  f r a c t u r e s  - 

Kubota and Aosaki5 de 

More than e igh t  m i  

I n  a l l  of t hese  examples t h  

_ -  

a t i o n s  t h a t  do When r e i n j e c  6 been attempted i n t o  geological  

not have l a rge  f r a c t u r e s ,  t h e  br ine  d isposa l  has been less successful .  A t  

r a b l e  problems were encountered, pa r t i cu  

e o ther  hand, enormous amou 

l y  during i n i t i a l  

6 of b r ine  have-b 

i n t o  porous aqu i f e r s  and r e s e r v o i r s  around the  world. In  the  Gylf S t a t e s ,  
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water t h a t  is produced from gas and o i l  w e l l s  is  disposed of  i n  r e l a t i v e l y  - 
shallow aquifers8.  In  numerous cases  around the  world, o i l  i s  recovered LJ 
using the  secondary recovery method of waterfloodingg. 

examplelo, 4.2 mi l l i on  b a r r e l s  per  day of sea water were in jec ted  i n  a 

water-flood pro jec t  i n  Saudi Arabia. Numerous t e r t i a r y  steam flooding p r o j e c t s  

are underway t o  recover high v i s c o s i t y  crude. 

t he  b r ine  t h a t  i s  produced during o i l  production, and i n  one pro jec t  up t o  

80 thousand tons per day of b r ine  has been recovered, vaporized, and in j ec t ed .  

In  a s ing le  

Some p ro jec t s  are reclaiming 

Although in j ec t ion  of f l u i d s  has been a common p rac t i ce  i n  both t h e  

o i l  and gas industry,  and i n  the  d isposa l  of i n d u s t r i a l  waste water, t he  

geothermal experience is  not as extensive.  Temperature e f f e c t s  must be con- 

s idered i n  geothermal i n j e c t i o n  which are not usua l ly  important i n  o i l  and 

i n d u s t r i a l  appl ica t ions  (except steam flooding) .  Not only are the re  b r ine  

chemistry problems, such as s i l i c a  depos i t ion ,  bu t  a l s o  s i g n i f i c a n t  r e se rvo i r  

problems, such as cold water break-through, which must be resolved p r i o r  t o  

geothermal in j ec t ion .  

One of t he  objec t ives  of t a s k  3/6 was t o  study the  problems encountered 

and experience required i n  d i f f e r e n t  geothermal f i e l d s .  

The d a t a  on r e i n j e c t i o n  i n  vapor-dominated systems mainly come from 

Larderel lo .  Reinject ion is  of utmost inportance in  t h i s  f i e l d  because of t he  

decrease i n  production detected i n  var ious  productive a reas  as  a consequence 

of more than 50 years  of exp lo i t a t ion .  Studies  of t h i s  f i e l d  are a l s o  of 

i n t e r e s t  as it is  considered the  only example of an "ageing" steam f i e l d ,  

where the  problem of maintaining production becomes p a r t i c u l a r l y  c r i t i c a l .  

Reinject ion i s  considered as  a means of ex t r ac t ing  heat  from the  geothermal 

r e se rvo i r .  

a ,  

Reinject ion has been c a r r i e d  out  i n  per iphera l  aqu i f e r s  on the  sou t i e rn  

margin o f  the  f i e l d  (Lago, Monterotondo) s ince  1974, i n j e c t i n g  small flow 
\ 
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rates (30-80 m3/h). 

and f l u i d  c h a r a c t e r i s t i c s  of the  wells nearest  t he  in j ec t ion  points.  

q u a n t i t i e s  o f ’  in jec ted  water are be l ieve  

cold water flowing toward t h e  steam f i e l d .  

No v a r i a t i o n  w a s  noted i n  the i t rend  of production rates 
S I  b.’ Th 

mix with much l a rge r  

Systematic i n j ec t ion  test 

t h e  ins ide  o he productive areas began only recently;  however, 

ra l  shor t  tests have been run i n  the  pas t ,  and occasion 

0 m3/h of water was  in jec ted  i n t o  the  r e se rvo i r  ove 

d r i l l i n g  operations i n  the  deepest wells. In some cases pr 

accura te ly  monitored i n  t surrounding zone. 

The most important points o r ig ina t ing  from these tests are: 

- note  reases i n  steam production were recorded i n  the  wells 

neares t  t e c t i o n  w e l l ,  when in j ec t ion  took 

l aye r s  of the  r e se rvo i r ;  

t h e r e  were no not iceable  e f f e c t s  on the  quant i ty  and c h a r a c t e r i s t i c s  

of t he  f l u i d  produced when in j ec t ion  took place at  depth. The depth 

l i m i t s  f o r  t h i s  change vary from zone t o  zone and are always easy t o  

def ine ;  t h e  d i f f e r e n t  i n j ec t ion  depths can only be i d e n t i f i e d  when using 

- 

completed wells of varying depths i n  t h e  same area o r  when inse r t ing  the  

casings during d r i l l i n g  operations.  

Another c h a r a c t e r i s t i c  of t h e  Lardere l lo  f i e l d  which i s  important i n  connection 

with t h e  r e i n j e c t  

superheated steam only i n  the  pore volume. 

t h e o r e t i c a l  an 

3 12, G r  ingar t en 

et a l l3 ,  Kasameyer and Schro 

examined t h e  temperature behavior of flow through f rac tures .  

, and Bodvarsson and Tsang15 have a l l  

Gringarten and 
W 
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- L, Sauty16 , Kasameyer17 , Tsang and Tsang18, Lippmann et a l l9  , and numerous 

o the r s  have s tudied d i f f e r e n t  aspects  of production and i n j e c t i o n  i n  porous 

r e se rvo i r s .  

Although the  bas ic  i n j e c t i o n  phenomena are known, t he re  are many t echn ica l  

and economic problems s t i l l  remaining t h a t  t he  geothermal engineer must contend 

i c u l a r  f o r  aqu i f e r s  t h a t  are not f r a c t u r e  dominated. For example, 

t he  amount of p a r t i c u l a t e s  can be a c r u c i a l  f a c t o r  i n  the  cost of i n  

f r a c t u r e s  are not present ,  as they tend t o  c log the  formation and t h e i r  removal 

through t h e  use of sand separa tors ,  spec ia l  w e l l  completions, and in- l ine  

f i l t e r i n g  is expensive. 

e f f e c t  on t h e  i n j e c t i o n  system, s ince  a system t h a t  r e s u l t s  

t h e  f l u i d  t o  be in j ec t ed  can r e s u l t  i n  s e r ious  corrosion problems. The necessary 

treatment t o  prevent excessive corrosion w i l l  again have an important impact on 

cos t .  

Also t h e  b r ine  u t i l i z a t i o n  scheme can have an important 

ygenation of 

There are s i g n i f i c a n t  environmental f a c t o r s  assoc ia ted  with t h e  i n j e c t i o n  

of f l u i d s ,  and i n  a previous sess ion  of t h i s  meeting some of these  f a c t o r s  , 
( 

were discussed. Induced se i smic i ty ,  con t ro l  of subidence, geochemical b r ine  

incompat ib i l i ty ,  chemical treatment methods, and the  environmental po l lu t ion  

of  groundwater ( i n  the  case of shallow aqu i fe r  i n j e c t i o n )  are a l l  quest ions 

--although s i te  specif ic-- that  requi re  add i t iona l  study before  a fu l l - sca l e  

i n j e c t i o n  p ro jec t  begins. 

The problems of i n j e c t i o n  wel l  t e s t i n g ,  p a r t i c u l a r l y  i n  t h e  case of a 

bo i l ing  reservoir f l u i d  o r  f r a c t u r e  flow, are numerous and mostly unresolved. 

Recent studies20s21 have defined some of t he  important phenomena. 

In  addi t ion  t o  t h e  problems assoc ia ted  with the  b r ine  chemistry,  t he  

r e se rvo i r  environment, and wel l  t e s t i n g ,  t h e r e  are a l s o  s i g n i f i c a n t  f i e l d  

management problems. 

u t i l i z a t i o n  of t he  resource.  The number of w e l l s ,  t he  w e l l  pa t t e rns ,  t he  

These problems are r e l a t e d  t o  t h e  opt imizat ion i n  t h e  
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amount of f lu id  injected,  and the temperature of 

chosen,to provide a minimum cost for pipelines,  .pumps, and wells. A t  the  same 

time, the  reservoir  pressure d vapor saturat ion for  d 

heat t ha t  i s  captured from the rocks must be maximized by the inject ion without 

premature cool-water breakthrough 

in jec t ion ,  and the 1 

has been reported 'by Gringarten 

e injected f lu id  must a l l  be . .  

hsi 

"sweep" of heat from the ro 

duction tha t  can be real ized 

l6 ,- Nathenson21 , Kasameyer and 

Schroederl4, for  example. 

The ava i l ab i l i t y  of large-scale multidimensional and multiphase 

numerical reservoir  simulators makes it possible t o  study the reservoir  

'flow phenomena, well test behavi f i e ld  management problems, and some of 

h injection. Re 

22, Pr i t che t t ,  e t  and Pruess20, and others 

tha t  the application l a t ion  t o  geothermal 

in jec t ion  i s  a very f r u i t f u l  appro 

The purpose of the present 

phenomena associated with geotherma 

with i t s  numerical simulation and t o  present the results of s 

studies.  

he basic phys 

inject ion,  t o  discuss problems assoc 

erica 

The par t icu lar  problems chosen for study are:. 

), inject ion of t o  a t h in  (s ingle  layer) reservoir;  

(2) a five-spot production/injection " -  co 

layer) reservoir ;  

inject ion of cold water i n to  a thick (multi-1 (3) 

. ,(4)' in jec t ion  of cold water in to  a one-dimension 

ion of t a rde re l lo  g representing a cro 

ese four problem 
, 1  &I case only one set of reservoir  p meters is 'considered. However, they 
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a means of assessing the  accuracy of s imulators  such as SHAFT7924 

i n  6OlVing i n j e c t i o n  problems and i n  q u a n t i t a t i v e l y  d iscuss ing  the  most 

important physical  phenomena which occur. 

2. In j ec t ion  Physics 

In  t h i s  s ec t ion  the  physics of t h e  flow during i n j e c t i o n  of f l u i d s  i s  

reviewed i n  two pa r t s .  The f i r s t  pa r t  dea l s  with i n j e c t i o n  i n t o  a r e s e r v o i r  

t h a t  can be approximated a s  a uniform porous medium f o r  which Darcy's Law is 

a good approximation, and the  second pa r t  dea l s  with flow i n  a r e se rvo i r  

i s  dominated by one o r  more la rge  f r ac tu res .  The d i f fe rence  between 

flow i n  a porous matr ix  and a f rac tured  matr ix  is important f o r  

and hydrodynamic phenomena. In  a porous ma te r i a l ,  t h e  temperature of t he  

the pores i s  always c lose  t o  t he  temperature of t h e  porous matr ix .  

In  homogeneous porous This i s  not necessa r i ly  t h e  case i n  f rac tured  media. 

media t h e  hydrodynamic flow is  slow and o f t en  approximately i so t rop ic .  

f rac tured  rock, t h e  flow can reach turbulen t  v e l o c i t i e s  i n  the  f r ac tu res  

aqd, i n  general ,  f r ac tu re  flow i s  not i so t rop ic .  

In  

. L wnen a r:LuLa OK L e m p e r a L u r e  11 is injeccea into a porous rocic rormaEion 

of temperature Tq,  two f r o n t s  begin t o  move away from the  i n j e c t i o n  point .  

The two f r o n t s ,  shown i n  Figure 1, are the  hydrodynamic f r o n t ,  which occurs 

a t  t h e  f a r t h e s t  d i s tance  t rave led  by in j ec t ed  f l u i d ,  and t h e  thermal f ron t  

where temperatures jump from T1 t o  T2. 

Bodvarssonl2 solved t h i s  problem f o r  l i n e a r  one-phase flow very  e l egan t ly ,  

and seve ra l  o the r s  have done so f o r  r a d i a l  flow. 

Kasameyer17 showed t h a t  i n  a l i q u i d  sa tu ra t ed  r e s e r v o i r  a p a r t i c l e  of t he  

in j ec t ed  l i q u i d  remains a t  temperature T1  for  an i n t e r v a l  of time given by 
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T 
A t  =- t 

T1 1 - 7  P 
(1) 

where tP is the t i m e  ( a f t e r  the inject ion began) t h a t  the par t ic le  was 

injected and 7 i s  the r a t i o  of "thermal masses" given by 
~ 

6P fCf 

+PfCf + (1 - 4)PrCr 
T =  (2) 

Here + is  porosity, P is density,  and C i s  the specif ic  heat capacity. The 

subscripts f and r r e fe r  t o  f lu id  and rock,-respectively. 

media, 

For typ ica l  porous 

A t  NN 0.25 t 
T1 P 

f 

This r e s u l t  is applicable i f  the injected l iquid moves with a sharp front 

(pis ton displacement). The r a t io ,  7 ,  can a l so  be shown t o  give the r a t i o  

of the injected volumes behind the thermal and hydrodynamic fronts  

respectively,  tha t  is 

= T  
vT1 

'hydro 
(3)  

When cool l iquid is injected in to  a porous rock tha t  is fu l ly  saturated 

with a two-phase f lu id  having steam saturat ion SI, the hydrodynamic front 

can be ra ther  broad. 

t ion ,  and pressure increase i n  the two-phase zone, giving rise t o  outward 

flow of mobile water outside of the swept volume. 

The injected f lu id  causes steam compression, condensa- 

In a par t icu lar  problem studied by O'Sullivan and Pruess20, the thickness 

of the zone where l iquid water saturat ion changes from 1 to  the undisturbed 

value of .8 turned out t o  be abou-t half  an order of magnitude in  the s imi la r i ty  

var iable  t /R2 .  

phase reservoir  i s  derived in  the appendix. 

A formula analogous t o  (3)  above for  in jec t ion  in to  a two- 
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The v i s c o s i t y  of  f l  including water--is s t rongly  dependent upon W 
temperature. This r e s u l t s  i n  seve ra l  h p o r t a n t  phenomena when the  i n j e c t i o n  

from t h e  temperature of " t h e  country 

rock, Tp. Tsan ade seve ra l  numer ies of t h e ' e f f e c t s  of 

i n j e c t i o n ,  and Lippmann et  a l l 9  used r e se rvo i r  simulation t o  study s ingle-  

phase v i s c o s i t y  e f f e c t s .  O'Sullivan and' Pruessp0 have obtained similar', 

resul ts  f o r  a two-phase example s u i t s  obtained by Tsang and Lippmann 

show t h a t  a t  e a r l y  times during i n j e c t i o n  of cold water t h e  pressure response 
I '  

at t h e  i n j e c t i o n  well is  determined by the  v i s c o s i t y  of t he  r e se rvo i r  f l u i d  a t  

temperature Tp. The-response then quickly unde rgoes ' a ' t r ans i t i on  t o  a s t eepe r  

growth rate determined by the  much higher  v i s c o s i t y  of the  cold in j ec t ed  - 

, f l u i d .  .Recent r e s u l t s  f o r  t he  two-phase cas re reported below. 

In  addi t ion  t o  the  v i s c o s i t y  e f f e c t 6  there  are a l s o ' e f f e c t s  due to  

t h e  d i f f e r e n t  f l u i d  dens' i t ies at temperature T i  and Tp. 

above we have assumed t h a t  t he  flow is r a d i a l  away f r d  the  in j ec t ion  w e l l ,  and 

uniform with depth i n  

I f l u i d s  with temperatur 

fn the 'd i scuss ion  

e e f f e c t  of d i f f e r e n t  d e n s i t i e  

T i  and Tp i s  t o  have the  heavier  f l u i d  g r a v i t a t e  t o  

the .bottom of the  r e se rvo i r .  During i n j e c t i o n  t h  e i u l t s  i n  a f ron t  t h a t  

more and .more inc l ined:  ihown In  Figure !2; ' injection of  cool  f l u i d  

o i r  r e s u l t s  i n  a thermal f ron t  

NathensonSf approximated *the of t h e  r e se rvo i r .  

d e n s i t y  of t he  l i q u i d  and steam. 

numerically f o r  two-phase r e se rvo i r s  and w i l l  be covered i n  d e t a i l  below. 
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(s;i The e f f e c t s  of the  thermal conduct ivi ty  of rocks and water have been 

a subjec t  of study by nume The consensus opinion i s  t h a t  t he  

conduct ivi ty  of the  rock is  so low-even when f u l l y  sa tura ted  with liquid-- 

t h a t  i n  most cases the  broadening of the  thermal f ront  due t o  heat  flow i n  

f ron t  of the  invading cold water can be neglected.  

thermal conduct ivi ty  does not play an important r o l e  i n  geothermal 

s modelers. 

That does not mean t h a t  

processes,  however. The hea t  l o s ses  over l a rge  boundaries--particularly 

from a t h i n  aqui fe r  (reservoir)--can be appreciable .  The v e r t i c a l  temper- 

a t u r e  p r o f i l e  near  the  ground sur face  in  a very th i ck  geothermal r e se rvo i r  

i s  governed by conduction e f f e c t s .  

considerat ion fu r the r .  

We w i l l  not d i scuss  t h i s  s p e c i a l  

There are two add i t iona l  physical  phenomena t h a t  play an important pa r t  

i n  the  development of hydrodynamic and thermal f ron t s .  One is  the  "fingering" 

e f f e c t  t h a t  develops when the  invading f l u i d  and i n  s i t u  f l u i d  a r e  miscibleZ6. 

In  the  case of a cool b r ine  invading hot b r ine ,  t h i s  considerat ion has 

importance only with respec t  t o  the  f l u i d  chemistry of t he  l i qu ids .  

due t o  the  f a c t  t h a t  t he  mixing occurs at the  hydrodynamic f r o n t ,  and hence 

has only chemical not thermal s ign i f icance .  

This is  

However, i n  t he  case of l i q u i d  i n j e c t i o n  i n t o  a two-phase f l u i d  t h e  

m i s c i b i l i t y  and phase i n t e r a c t i o n  of water and steam might r e s u l t  i n  consider- 

ab le  broadening of the  bo i l ing  zone ahead of t he  hydrodynamic f r o n t .  

Figure 3 we show an example of f inger ing  taken from Blackwell, e t  alZ6. 

Although the  f l u i d s  i n  t h i s  example are not water and steam, t h e  

In 

phenomenon i s  common t o  any misc ib le  f l u i d s  and becomes more s i g n i f i c a n t  as 

the  d e n s i t i e s  and r e l a t i v e  permeabi l i t i es  of t h e  two miscible  f l u i d s  become 

increas ingly  d i f f e r e n t  (e.g. ,  water and dry steam). 

steam a r e  i n t e r a c t i n g  phases obviously complicates the  ana lys i s  of t h i s  

The f a c t  t h a t  water and 

e f f e c t  . 
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Figure 2.  Injection of col  0 a thick reservoir. 

I 
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The second consideration, with regard t o  f ronta l  advance, i s  hydrodynamic 

dispersion which applies t o  both the thermal and hydrodynamic fronts. 

the  advance of a l iquid in to  a two-phase f lu id ,  the well-known phenomenon of 

hydrodynamic dispersion27 might I play a s ignif icant  secondary ro l e  in  the 

spreading of the moving two-phase zone ahead of the hydrodynamic front. 

Hydrodynamic dispersioa r e su l t s  i n  a spreading of the thermal -front a l so  

(usually referred t o  as thermal dispersion28) . 
been spent in  studying dispersion of species concentrat ion29. 

less-has been accomplished i n  modeling or  analysis of thermal dispersion. 

Hydrodynamic dispersion of a liquid/two-phase interact ion is a t o t a l l y  new 

For 

Considerable e f for t  has 

But much 

consideration and t o  our knowledge has not been investigated. 

2.2 Fractured Matrix 

Some of the e f f ec t s  discussed above are applicable for  inject ion in to  

fractures .  However, there  are a number of special  considerations tha t  are . 

peculiar t o  hydrothermal flow i n  fractures .  

phenomenon is the anisotropy of the flow tha t  is  related t o  f racture  

The most important f racture  

or ientat ion.  

necessi ta te  modeling the detai led anisotropic flow. 

Kasameyer and Schroeder14, and others have investigated the f lu id  and 

heat flow i n  dis t r ibuted fractures .  They have shown t h a t  there i s ' a  range 

of f racture  spacing and aperture over which the rock behaves l i ke  a porous 

anisotropic medium. 

Outside tha t  range of f racture  spacing and aperture the fractures.must be 

modeled, taking in to  account both t h e i r  o r ien ta t ion  and hydrothermal response. 

For example, the numerical r e s u l t s  for  plane, pa ra l l e l  f ractures  indicate 

It should be noted tha t  the  presence of f ractures  does not 

Warren and Root30, 

. 

In t h i s  range the f rac ture  or ien ta t ion  i s  irrelevant.  ' 

tha t  for typical  geothermal rocks the fractures  can be very widely spaced, - 
>50 m say, while s t i l l  displaying the thermal behavior of an equivalent , c., 



393 

porous medium. 

equivalent porous rock are  very d i f f i c u l t  t o  estimate or ver i fy ,  which 

teduces the  pract i c a l  value 

The material  parameters-porosity and permeability-for the W 

hese observations; 

spacing and aperture can be estimated from .dr i l l ing,  coring, and tes t ing ,  

then the  appropriate modeling approach can be chosen. 

When the fractures  must be modeled as discre te  channels, both the f lu id  

flow and heat flow fromZhe rock- to  the f lu id  must be modeled accurately. 

The $f lu id  flow in  p a r a l l e l -  smooth planar channels was shown t o  follow the 

(4) 
, : w Ap . 

!/rW 
- -  . I  I -  

fo r  radial '  flow. Witherspoon et  a131 have shown tha t  t h i s  re la t ionship 

holds f o r  rough 

stresses across  the fracture  faces 

viscosi ty ,  p i s  pressure, r i s  radius,  and Q is flow rate. 

i r regular  f ractures  even for  d i f fe ren t  e f f ec t ive  applied 

The Subscripts 

e and w r e f e r  t o  a reference radius and t o  the wellbore radius,  respectively.  

This r e su l t  h g g e s t s  t ha t  a "fracture permeability" should be defined t o  

be 3 / 1 2 .  *'Equation (4) holds only for  r e l a t ive ly  impermeable rock. 

rock has some matrix permeability and "leaks" f lu id  ih to  the fracture ,  

equation'  (4) no "longer holds t rue  

I f  the 

The heat flow from the rock t o  the f lu id  moving between plane pa ra l l e l  

p la tes  has been approxiuiated i n  s tud ies  of the:heat t ransfer  properties of geo- 

The important observation is  tha t   thermal fractures  by numerous investigators.  

a hydrodynamic and-thermal f ront  w i l l  not-move"out r ad ia l ly  from an inject ion 

- w e l l  when flow is predominantly through f rac tures .  Bodvarsson and T ~ a n g ~ ~  
/ 

have begun numeiical s tudies  of these phenomena €or both-l iquid flow and two- 

phase flow.' When flow is  through ver t ica l '  f ractures  the gravi ta t ional  e f f e c t s  

wi l l -be  important while the e f f ec t s  of misc ib i l i ty  and dispersion are not. 

b.' 

i '  i ~ 
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L d  3. Numerical Simulation of In j ec t ion  

3.1 "Front-Dominated" Problems 

From t h e  point  of view of numerical modeling, t h e  problem of the  i n j e c t i o n  

of cold water i n t o  two-phase or steam zones i s  dominated by the  movement of  

f r o n t s  (see Figure 1). As discussed i n  sec t ion  2, t h e r e  i s  a hydrod 

f ron t ,  which separa tes  t he  more d i s t a n t  p a r t s  of t h e  r e se rvo i r  from those  

swept by the  in j ec t ed  water, and t r a i l i n g  behind t h i s  i s  a thermal f ron t  

where t h e  in j ec t ed  f l u i d  makes a t t a n s i t i o n  from rese rvo i r  temperature t o  

i n j e c t i o n  temperature. It i s  near  these  f r o n t s  where the  s i g n i f i c a n t  

changes occur. 

which are employed i n  numerical himulators,  

The methods of s p a t i a l  d i s c r e t i z a t i o n  and volume averaging, 

e inherent  l i m i t a t i o n s  f o r  

front-dominated problems. 

i n  some d e t a i l .  

The shortcomings of these methods are now discussed 

Subsequently it is  shown, by way of numerical experiments 

as well  as a n a l y t i c a l  methods, t h a t  s imulat ion nonetheless y i e lds  s a t i s f a c t o r y .  

r e s u l t s  i f  executed ca re fu l ly .  

For one-dimensional r a d i a l  i n j e c t i o n  i n t o  a two-phase reservoir the  

s i t u a t i o n  is  charac te r ized  at a l l  times by a cold zone around t h e  i n j e c t i o n  

w e l l ,  surrounded by a swept zone c lose  t o  o r i g i n a l  r e se rvo i r  temperature. 

Outside of t h i s  swept zone, some condensation takes  place which i s  accompanied 

by s l i g h t  temperature and pressure  increases  and outward flow. 

of f i n i t e - d i s c r e t i z a t i o n  modeling of  t h i s  process is caused by t h e  f a c t  t h a t  

f o r  some period of t i m e  t he  separa t ion  between hydrodynamic and thermal f r o n t s  

i s  less than the  g r i d  spacing. 

having a lower temperature. 

inward, toward t h e  hydrodynamic f ron t .  Actual ly ,  t h e  flow induced by co 

i n j e c t i o n  i n t o  a two-phase system is outward, away from the Cnjection w e l l  at 

a l l  times ( see  below). 

The bas i c  

Therefore, t h e  hydrodynamic f ron t  is modeled as 

This causes a spurious flow from t h e  ou te r  zone 

In mathematical terms, t h e  d i f f i c u l t ' i e s  arise from t h e  f a c t  t h a t  t h e  

appl icable  mass-and-energy-ttansport equat ions are usua l ly  predominantly 
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d i f f u s i v e  (parabol ic )  i n  na tu r  t d i sp lay  s t rong1 onvective (hyperbol ic)  

n the  v i c i n i t y  of t h e  f ron t s .  It is  w e l l  

when solved on a d i s c r e t e  s p a t i a l  mesh, are subjec t  t o  much 

own t h a t  hyperbolic 
W 

s t ronger  numerical d i spers ion .  

. .  

and most bas i c  i n j e c t i o n  problem involves one-dimensional 

h i n  r e se rvo i r .  have used var ious  g 

(AR = 0.5 m, 1 s imula te  the '  problem defined i n  Table 1. 

Figures 4 and 5 compa e simulated r e s u l t s  with semi-analytical  so lu t ions  
4 

+ 

l a r i t y  so lu t ion  method ( re ference  20). 

ment f o r  vapor sa tu ra t ions  and pressures .  The 

There 

r t h e  temperature f r o n t ,  which is  

been smeared out  considerably.  The g r i d  

AR = 1 m. Figure 6 shows t h a t  g 

" s i g n i f i c a n t  improvement i s  obtained f o r  a g r i d  spacing of .5 m. 

i n  s p i t e  of the  problems noted above, 

i d  block. This 

water has a temperature intermediate  between the  i n j e c t i o n  teniperature and t h e  

a r i g i n a l  r e s e r v o i r  temperature. 

U 

The second g r i d  block experiences a sequence 



TABLE 1: Parameters used in  In j ec t ion  Simulation 

PROBLEM 

FIVE-SPOT " l-D RADIAL 2-D VERTICAL PARAMETER 

Rock dens i ty  P r  (kg/m3) 

.Rock s p e c i f i c  heat C r  ( J/kg°C) 

2600 2600 

770 755 

2600 

755 

2 .o 2.1 2.1 Rock heat conductivity Kr (W/m°C) 

15 10 10 

240 40 40 

Porosity Q (XI 

Permeability k (10-15 m2) 

Residual immobile water sa tu ra t ion  Sm, * 
Residual immobile team s a t u r a t i o n  Sgc * 
Reservoir thickness (m) 

I n i t i a l  r e se rvo i r  temperature (OC) 233.8 

I n i t i a l  vapok s a t u r a t i o n  (%I 

.30 .40 .40 

.05 0.0 0 .o 

1 10 100 

240 240 

20 75 75 

In j ec t ion  enthalpy (J/kg) 421938 147000 ' . 138300 

33.0 

6.0, 15.0 
. .  

40.0 In j ec t ibn  temperature (OC) 100.1 

In j ec t ion  rate (kg/eec) A0358 0.0, 0.025, 0.05 

Production rate (kg/sec) --- 0.025 -- 
*Corey's equations as given i n  Equation 5 were used for 

. .  
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1.7 

1.6 

, Figure 4. Flowrate and saturation profiles for injection of cold 
water into a two-phase reservoir. Similarity method- 
results*O are shown - and SHAFT79 results as 0. 

3.3 

n 
P 9 3.2 
Y 

, s 
U J  

a- 

3.0 

- i  

Figure 5. Temperature and pressure profiles €or injection of cold 
water into a two-phase reservoir. Similarity method 
results*O are shown as - and SHAFT79 results as 0 
for pressures and 0 for temperatures. 
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of events  similar t o  the  f i r s  nflow from the  well  

block occurs  a t  somewhat lower temperature,  causing temperature and pressure 

i n  t h e  second g r i d  block t o  drop and inducing inward flow from the  t h i r d  

&I, 

low reverses  a f t e r  t h e  second g r id  block makes a phase t r a n s i t i o n  

t o  l i q u i d  condi t ions ,  and the  process continues i n  the  t h i r d  g r i d  block. 

Due t o  repeated contact  with the  rock and mixing with f l u i d  of o r i g i n a l  r e se rvo i r  

temperature,  t h e  temperature of t h e  hydrodynamic f ront  increases  a6 it moves on 

from g r i d  block t o  g r i d  block. 

diminishes i n  the  process,  u n t i l  i t  f i n a l l y  disappears  e n t i r e l y .  The advancing 

The amplitude of the  spurious inward flow 

hydrodynamic f ron t  causes some steam t o  compress and condense, thus increasing 

temperatures s l i g  y above o r i g i n a l  r e se rvo i r  temperature. In  the  s imulat ion,  

we observe t h a t  t h e  hydrodynamic f ront  a t  la te  times experiences a temperature 

increase  of AT = .374 OC. condensation of the  steam present  

i n  t h e  swept volume a simple heat  balance ca l cu la t ion  gives  a temperature 

increase  of AT = .381 C ,  i n  very good agreement with the  simulated value.  

We be l i eve  t h a t  t h e  outward flow (mostly water) caused by the  condensation- 

process i s  responsible  f o r  t h e  very d i f f u s e  hydrodynamic f ront  seen i n  t h e  

s imulat ion.  Comparison with t h e  s i m i l a r i t y  s t i o n ,  Figure 4, shows t h a t  t h i s  

r ep resen t s  a "real" e f f e c t ,  not an a r t i f a c t  o 

hydrodynamic f ron t  i s  so d i f f u s e ,  good r e s u l t s  can be obtained, even f o r  a l a rge  

Assuming comple 

0 

he simulation. Because the  

spacing of  A R =  4 m. The temperature f ront  on the  o ther  hand is very 

harp,  and subjec t  t o  much s t ronger  numerical d i spers ion  (see Figure 5 ) .  For 

completeness, we mention t h a t  a r a t h e r  sharp hydrodynamic f ront  w i l l  occur i n  

t h e  case  where t h e r e  i s  no mobile l i qu id  water 

Further  i n s igh t  i n t o  t h e  s can be obtained from a considerat ion 

of t / R 2  invariance,  Consider a g r id  with spacing i. It is easy 
i 

~ -h.l 
I I 

from t h e  d i s c r e t i z e d  mass- and energy-transport  equations t h a t  t he  e n t i r e  

s imulat ion ca l cu la t ion  f o r  r a d i a l  geometry i s  invar ian t  under the  t ransformation:  

1 
1 
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ARi -> ARit = gARi 

A t k  -> A t k t  = L A t k  2 

I f  a l l  r a d i i  i n  the  g r i d  are scaled by a f ac to r  L, and a l l  t i m e  s t eps  

are scaled by a f ac to r  €2, t h e  numerical simulation produces iden t i ca l  

r e s u l t s ,  element fo r  element and t i m e  s t e p  fo r  t h e  step. 

t h i s  is t h a t  i n  the  f i n i t e  d i f fe rence  equations t i m e  s t eps  and volumes 

appear only i n  the  coinbination A t / V i ,  and t h a t  t he  flow terms contain ' 

geometrical. f ac to r s  i n  the  form A i j / ( d i  + d j ) .  

area between g r id  blocks i and j ,  and d i  and d j  are the  respec t ive  d is tances  

of t he  nodal points from t h e  in t e r f ace .  

The reason f o r  

Here A i j  is t h e  in t e r f ace  

Whereas the  so lu t ion  t o  the  

e n t i a 1  equations is  s t r i c t l y  dependent upon t / R 2 ,  t h e  so lu t ion  of t he '  

difference equations has t h i s  property only approximately. A t  different  mesh 

poin ts  t he  so lu t ions  at  t i m e s  chosen t o  give the  same t / R 2  value are not 

i d e n t i c a l  because of  t he  t h e  dependence of numerical dispersion. 

explained above, simultaneous sca l ing  of both the  t i m e  s t eps  and t h e  g r i d  

produces a "discrete" t / R 2  invariance.  

However, as 

We have v e r i f i e d  the  above mentioned invariance proper t ies \of  t h e  

d i f fe rence  equations e x p l i c i t l y  by means of numerical simulation. 

r e s u l t s  a t  t 4 .m are i d e n t i c a l ,  . 

element fo r  element, with r e s u l t s  at  t = 40,000 sec for  a g r i d  with spacing 

AR = 2 m. 

g r i d s ,  i n  t h e  following way. 

with AR = 2 m were used t o  i n i t i a l i z e  the  simulation with t h e  AR = 1 m g r id  

Simulated 

160,000 sec f o r  a g r id  with spacing A 

This property was then used t o  obta in  simulations f o r  t h e  f i n e r ,  

Simulated r e s u l t s  at t = 160,000 sec fo r  a g r i d  

at t = 40,000 sec, and s i m i l a r l y  fo r  t h e  AR = .5 m g r id ,  

The appendix presents  a simple lumped model fo r  computing the  movemeqt 

of  hydrodynamic and thermal f ron t s .  From Equations (A.4,  A.3) we compute, f o r  
fi 

t = 1.6 x lo5 sec, a rad ius  of t he  swept zone, Q = 28.31 m. l . _  A t  t h '  L 
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rad ius ,  simulated steam s a t u r a t i o n  i s  11.3 % (see Figure 61, which is c lose  

t o  t h e  mean of 0 X and 20 %.- The s l i g h t  devia t ion  occurs because the  hydro- 

dynamic f ron t  is spread out  i n  an asymmetric way, with the  inner  par t -  being 

s t eepe r  than the  outer  pa r t .  

not included i n  our lumped model, which i s  caused by water flowing outward 

The spreading i s  a "true" physical  phenomenon, 

ou t s ide  of t h e  swept volume, as a consequence of condensation-induced 

pressure increase.  From Equation (A.4) t h e  lumped model p red ic t s  a / radius  

o f  t he  cold zone, &old = 6.14 m. A t  t h i s  radius ,  simulated temperature  is 

167 OC (AR = 0.5 m g r i d ) ,  which is  the  exact,me between in j ec t ion  

temperature and o r i g i n a l  r e se rvo i r  temperature ;'.a - 
In  summary we conclude t h a t  comparisons with the  s i m i l a r i t y  so lu t ion  

method and'use of.  var ious  g r i d  spacings demonstrate t h a t  numerical s imulat ion 

o f  i n j e c t i o n  can produce accurate  r e s u l t s .  Further  i n s igh t  i n t o  t h e  workings 

and appl i c a b i l  it f numerical simulation f o r  i n j ec t ion  problems i s  obt  

a lumped parsmete 

t h e  governing equat ion 

approximation, and from the  invariance p rope r t i e s  of 

i n  f i n i t e  d i f f e rence  form. 

I 

I ' The r e s u l t s  given i n  Figures  4 - 7 simple constant  rate ' 

i n j e c t i o n  test. 

straight l i n e  sec t ions  (Figure 7) .  

h o t ' w a t e r  and t h e  second t o  t h e  movement of cold water.  

t h e  mobi l i ty  o f  the water can e a s i l y  be ca lcu la ted .  

poss ib le  f o r  production tests i n  two-pha 

changes during t h e  course of t h e  test an 

The semilog p l o t  of the  build-up curve shows tko 
i 

The f i r s t  corresponds t o  movement of' 

In  e i t h e r  case , ;  

. 

, I  

This i s  not genera l iy  

r e s e r v o i r s  s ince  t h e  mobi l i ty  

depends i n  a non-obvious ~ way . __  on 
I_* 

t h e  .relative permeabi l i t i es .  r:  

From t h e  s t r a i g h t  l i n e  por t ions  of t h e  pressure plot the  kinematic 

m o b i l i t i e s  can be ca l cu la t ed  from t h e  formulas given by Garg33 as 
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8.23 x 10'7 s for  the 100 OC water and 1.79 x 

water, 

s for  the 234 OC 

These values compare very well with the exact values of 8.24 x s 
L' 

and 1.73 x 

pressure, i f  referred t o  a radius of -56 Rw (Rw = well block radius) as 

suggested by Garg, yields  a point on Figure 7 which is within l i n e  thickness 

of the  "cold" s t r a igh t  l ine.  

s respectively. It is worth mentioning tha t  the wellblock 

It: is  shown i n  the appendix tha t  the location of the therm& front can 

be used t o  estimate porosity. 

(corresponding t o  t /&2 = 4244.1 s/m2), as read off  from Figure 6 in to  

Equation (A.71, yields  a very accurate value of 4, = 15.05 X .  However, 

taking t /Q2 from Figure 7 a t  the  intersect ion of the two s t ra ight  l i nes ,  

t /Q2 = 4600 s/m2, gives 4 = 24.5 X .  

i n t o  large inaccuracies for  4 ,  because i n  the numerator of Equation ( A . 7 )  

two large numbers of equal order of magnitude are being subtracted. 

application of t h i s  method of porosity estimation 

of t he  two s t r a igh t  l ines ,  and one can not expect very accurate r e su l t s  from 

t h i s  approach. 

Inser t ing Rc = 6.14 m for  t = 1.6 x lo5 sec 

Small i curacies i n  t/@ t rans l a t e  

Field 

the intersect ion 

The excellent agreement between thb semi-analytic r e su l t s  and the  

SHAFT79 r e s u l t s  gives confid 

mesh design, t o  analyse more c 

eities in the  res 

and var iable  inject ion rates. 

i t y  of the simulator, with careful  

ect ion tests including inhomogen- 

ssure boundaries ( f rac tures )  , 

5. Five-spot Results 

in jec t ion  i n  a vapor- 

dominated geothermal reservoir ,  a five-spot configuration of production and 

in jec t ion  wells (see Figure 8) was studied. 

1000 m was assumed and reservoir  parameters typical  of the I t a l i a n  reservoirs  

A production well spacing of 
W 
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t, Injection well 

Figure 8. The configuration of production and injection wells . 
and the computational grid for.the five-spot problem. 
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were used (see tab le  1). The production rate of 0.025 kglsec was-chosen t o  
- 

give a supply of f lu id  i n  the reservoir  suf f ic ien t  to- 'sustain approximately 
W 

t h i r t y  years of production. 

Because of the symmetry of the configuratxon only one eighth of a typical  

five-spot has t o  be considered. 

shown in  Figure 8. 

The mesh used i n  the SHAFT79 calculat ions i s  

Three cases were considered: 

( i )  no inject ion,  

(ii) 

(iii) 

an inject ion r a t e  equal t o  the production r a t e ,  

an inject ion rate double the production rate. 

The vapor saturat ion in  the reservoir is  suf f ic ien t ly  high so tha t  water is  

immobile and therefore vigorous boi l in  

production r a t e  from steam alone. The 

consequence of boil ing.  

high t o  allow comparatively rapid spreading of boi l ing\and, the associated 

s required . _  * t o  maintain the required 

The permeability i n  the reservoir i s  .suff ic ient ly  

pressure decline. As can be seen i n  Figure 9 ,  the pressure drops almost 

uniformly across the reservoir  as t i m e  progresses, with' a corresponding near 

o r  saturat ion increase. Once the reservoir  

has completely superheated (dried out) the  amount of mass l e f t  in  the 

reservoir  i s  very small an 

A t  t h i s  stage the reservoir  t 

plenty of heat remains i n  place, 

contains 57.4 x 1013 J of ene 

i n  the f luid.  

There we it to the temperat e of the reservoir a t  which production 

i s  l i ke ly  t o  be useful.  

contained i n  the  rock matrix at 18OoC as 39.8 x 1013 J. 

declines very rapidly (see Figure 10). 

s s t i l l  high (c 220 OC) ,  tha t  i s ,  

unexploited s t a t e  the reservoir 

only 3 x 1013 J are  contained 

In 
I 

Clearly not a l l  of t h i s  energy is available for  exploitation. 

.,> 

For reference, a simple calculat ion gives the energy 

A t  the  end of i t s  
* .  

ins  50.0 x 1013 J. Some 4.4 x lor3 J - W  
the  rock t o  the f lu id  t o  sustain the boiling. 
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Figure 9a. Pressure prof i l e s  along a l i n e  
joining production and inject ion 
w e l l s  for  the five-spot problem. 
Inject ion rate 0.0 kg/sec. 

Figure 9b. Temperature p r o f i l e s  along a l i n e  '--' 

joining the production and i n j e c t i o b  
w e l l s  for the five-spot problem. 
Inject ion rate 0.0 kg/sec. 
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In case ( i i )  where 100 X of the produced f lu id  is  reinjected,  the 

injected f lu id  does not s ign i f icant ly  influence the production u n t i l  a f t e r  

about t h i r t y  years, the stage at which the reservoir  would be exhausted with 

no injection. 

f lu id ,  with 75 X vapor saturat ion,  occupies a much smaller volume. 

pressure gradient required t o  push the more viscous warm or hot water 

through the reservoir i s  not sustained beyond the condensation point where 

the boi l ing f lu id  meets the hot water. 

s i b i l i t y  i n  the two-phase region prevents pressure changes at the  inject ion 

The injected f lu id  being much more dense than the or ig ina l  

The 

.' 

The very large e f fec t ive  compres- 

w e l l  from influencing the production 

A t  t h i r t y  years about SO X of the reservoir  has dried out,  a small 

f ract ion is completely l iquid and the  rest is  boiling (see Figure 11). 

t h i s  time the production comes from boi l ing in ,  and extension o f ,  the  two- 

phase region. 

i t  encroaches in to  the previously superheated region. 

over the whole reservoir drops, some of the condensed hot water starts boiling. 

The overal l  pressure continues t o  dec l ine- in  order t o  produce enough steam and 

the  gradient i n  the superheated region around the well steepens once a l l  the  

mass supply near the well is  exhausted. 

After 

Some of the water i s  mobile i n  the boiling 

Also as the  pressure 

These two e f f ec t s  lead t o  unacceptably 

low downhole w e l l  pressures at about for ty  years. A t  t h i s  stage there  is  s t i l l  

plenty of heat l e f t  i n  the reservoir  (48.9 x 1013 J). An in te res t ing  feature  

of the reservoir temperature d is t r ibu t ion  a f t e r  t h i r t y  years (see Figure 9 )  i s  

tha t  because heat is being "mined" from the  boi l ing region i ts  temperature drops 
- -- 

below tha t  of t he  superheated steam region surrounding the  well. 

For case (iii), with the inject ion r a t e  double the production rate, 

,---. 
the results are qua l i ta t ive  s imilar  t o  case ( i i )  (see Figure 12). A t  t h i r t y  

years, the reservoir  has a superheated zone (smaller than i n  case ( i i ) ) ,  a LJ 

boiling zone and a large l iquid zone. Production is possible for  a fur ther  
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twenty years  during which the ,bo i l ing  zone extends 

reg ion  and the condensed region. 

dec l ines  s t e a d i l y  while t h e  temperature dec l ines  m 

bo i l ing  zone. 

r e s e r v o i r  is  s t i l l  46.9 x 1013 J and c l e a r l y  higher  i n j e c t i o n  r a t e s  would 

increase  t h e  longevi ty  of t h e  f i e l d  s t i l l  fu r the r .  

The pressure throughout t he  r e se rvo i r  
u 

A t  t h e  end of usefu l  production, t h e  energy remaining i n  the 

. 

From these  cases it is  c l e a r  t h a t  r e i n j e c t i o n  can extend the  l i f e  o 

I n  two-phase system considerably but  it does not increase  power output.  

t ,  because t h e  in j ec t ed  f l u i d  reduces the  volume of t he  bo i l ing  zone 

ava i l ab le  f o r  steam production, the-product ion  pressure drops s l i g h t l y  f a s t e r  

when more f l u i d  is  in j ec t ed  (see Figure 10).  

The r e s u l t s  obtained here  are f o r  an idea l ized  homogeneous, i s o t r o p i c ,  

t h i n  r e se rvo i r .  I n  real r e se rvo i r s ,  f r ac tu re s  and g rav i t  

p r e f e r e n t i a l  movement, with respec t  t o  d i r e c t i o n  o r  depth,  of 

x t  sec t ion .  e e f f e c t  of g rav i ty  i s  s tudied  i n  

I 

6. Gravi ty  Segregation 

A numerical study of  g r a v i t y  seg rega t i  

for a s i n g l e  choice of i n j e c t i o n  temperature and rese 

Several  d i f f e r e n t  cases were examined f o r  a r 

plane p a r a l l e l  r e se rvo i r .  Water a t  z 33 C wa 

with t h e  r e s e r v o i r  i n i t i  t a steam satur 

summarize . the i n i t i a l  c o n d i t i  

t h e  computations are pres  

important poi  

0 

gures  showing some of the most 

ows t h e  r e s u l t s  from Pro 1 and 2 descr ibed 

i n  Table 2. Th igu re  shows a com 

cases, and demonstrates dramat ica l ly  how important g rav i ty  segregation e f f e c t s  

are when an appreciable  amount of steam is  present i n  the  reservoi r .  I n  these  
-u 

c a l c u l a t i o n s  t h e  absolu te  permeabi l i t i es  were t h e  same in  the  ho r i zon ta l  and 
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GI 

TABLE 2: Injection Parameters 

C a s e  number 1 2 3 4 5 . 6  

_. Gravity (m/sec2) 0 9.81 9.81 9.81 9.81 9.81 

Open interval loom loom top top bottom bottom 
4om 4om 4om 4om 

Injection rate 15 15 15 6 15 6 
(kg/ sec 1 

. .  

. .  
. , .  _ >  

. - .  
I. .! . 

80 

Figure 13. 

Radial distance (m) 

Locations of the hydrodynamic front 
for injection into a thick reservoir. 
Case 1, no gravity, ----; 
Case 2, gravity, -. G 
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vertical  d i r ec t ions .  In many cases ,  t h e  v e r t i c a l  permeability w i l l  be con- 

b./ s iderably  less than the  ho r i zon ta l ,  and w i l l  reduce the  tendency of t he  in j ec t ed  

f l u i d  t o  slump t o  the  bottom of the  reservoi r .  Figures 14 and 15 show t h e  - 

corresponding tempera oblem 1. The s p r e  ng of ' t he  thermal f ront  is  

a numerical e f f e c t  due t o  the  coarse mesh (20 m). 
'i 

I n  Figures 16 through 18 t h e  r e s u l t s  fo r  Problems 5 and 6 a 

The ch lcu la t ions  show t h a t  t he  in jec ted  f l u i d  i n i t i a l l y  plumed 

t h e  motion is outward and downward through the remainder 

of about 120 days. 

e in j ec t ion  period . 

Obviously the re  i s  a r e l a t ionsh ip  between the  v e r t i c a l  

he ight  of t he  leading edge and the  in j ec t ion  flow rate. A t  t he  higher rate t h e  
. .  

hydrodynamic f ront  i s  much more spread out with an apparent "second pulse" 

forming near t h e  w e l l .  A t  t he  lower rate t h e  l i qu id  simply slumps i n t o  the  

r e se rvo i r  with - a l a rge  n a l  e f f e c t .  This r e s u l t s  i n  a leading edge of 

e,  even though t h e  higher rate 

i s  more than twice as g rea t  (15 compared t o  6 kg/sec of in jec ted  water). 

Although t h e  l i qu id  advances very quickly near t he  bottom of t h e  aqu i f e r ,  t he  

thermal fronts--as shown i n  Figure 18--lag f a r  behind. Thes 

important. implications f o r  production/injection well f i e l d s .  

se rva t  ions have 

Figures 19 and 20 show the  r e s u l t 6  fo r  Problems '3 and 4.1 These r e s u l t s ,  

although not ca r r i ed  out as f a r  as the  o the r s ,  show a s ign i f i can t  

migration, of f l u i d ,  and suggest t h a t  t he  hydrodynamic front w i l l  

develop more near ly  l i k e  the  f u l l  i n j e c t i o n  case described ab 

Due t o  t h e  l a rge  compress ib i l i ty  i n  t h e  two-pha e portions of t h e  r e se rvo i r ,  

the  hydro-dynamic f ront .  I n  we do not see a s i g n i f i c a n t  pressure i 

t h e  case of i n j e c t i o n  a t  t he  top of t h e  

unimportant, pressure ping, condensing l i qu id ,  

t he  pressure decreases 

f r o n t ,  which r e s u l t s  i n  a few percent increase i n  steam sa tu ra t ion  loca l ly .  

o i r  an in t e re s t ing ,  bu t  r e l a t i v e l y  

of the  reservoi r  near t h e  hydrodynamic 

kp 

1 -  
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Figure 14. Temperature profiles for injection into a thick 
reservoir (case 1) along a l ine  i n  the horizontal 
central plane (50 m depth). 
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Figure 15. Locations of the thermal front for injection into a 

thick reservoir (case 2) .  
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I Radial distance (m) 
I , , Figure 16. Locations of the hydrodynamic front for injection 

into a thick reservoir. 
15 kg/sec. 

Case 5 ,  bottom injection a t  



20 O - I  

416 

Figure 

Radial distance (m) 

18. Locations o f . t he  thermal 
f ront  f o r  in jec t ion  i n t o  
a thick reservoir.  Case 5 ,  
bottom in jec t ion  a t  
15 kg/sec. 

I I I 
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Radial distance (rn) 

100, 

Figure 

. .  . . .  

I .. . , . '  

19. Locations of the hydro- 
dynamic f ront  f o r  in jec t ion  
i n t o  a thick reservoir.  
Case 3, top in jec t ion  a t  
15 kg/sec. 

Figure 20. 

4 Radial distance (rn) 

I 

t i  

Locations of .the hydro- .. 
dynamic f ront  f o r  in jec t ion  I 
i n t o  a thick reservoir . .  - - i  Case 4, top in jec t ion  of 
6 kg/sec. . 
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’ Since a coarse gr id  was used for  these calculations (20 x 20 m),  a 

number of questions remain regarding numerical e f f ec t s  on the detai led front 

propagat ion. These quest ions were out s ide the scope of these investigations.  

7. One-Dimensional Approximation of Larderello 

We consider a one-dimensional vertical  system with porosity. Figure 21 
, ” -  _ .  

shows our idealized system and the corresponding r e a l  reservoir.  Reservoir 

properties and thermodynamic conditions are similar - _ -  to _ _  those encountered i n  

the  most depleted zones of Larderello. 
, I  

- 
The wells produce from a fracture  system a t  the of t h e  reservoir.  

The fracture  system is  presumed t o  make the pressure uniform at the top and 

equal t o  bottomhole values in  the ,productive wells. The steam produced by 

r t o  co l lec t  i n  the 

op of the reservoir .  ons are given i n  

Figure 22. Pressure is  maintained pract at the top and 

bottom boundaries by connecting the system with f i c t i t i o u s  elements having very 

large volumes. 

with a steam t ion  rate of 17 

20 kg/(sec*km 

(Figure 23). 

The system remains prac t ica l ly  steady i n  these conditions 

water at 30 OC 
f 

1 ,  

d 

It has already been noted tha t  i n  problems involving sfiarp fronts  and 

phase t rans i t ions ,  s@nulation produces osc i l lb t ing  trends i f  a ce r t a in  s i ze  

and tha t  these osc i l l a t ions  are a consequence. of f i n i t e  space d i ~ c r e t i z a t i o n . ~ ~  

These osc i l l a t ions  occur i n  a11 our examples of regions 
I 

of the reservoir  where P < Psat.  They der ive:  from f i n i t e  d i scre t iza t ion  

and from the  hypothesis t ha t ,  i n  each point of the reservoir ,  the rock and 

f lu id  are at a l l  times i n  thermal equilibrium. 

Figure 24 shows the trend of the  production-flow rate and some quant i t ies  

i n  the gr id  elements near the in jec t ion  point. This re fers  t o  case a) of 
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const P EV' 0 1,' 
c7 

1000 
Depth 

g5 = 2 

-const P 

Figure 21. Linear flow model for reinjection studies. Rock 
and thermodynamic characteristics are similar to 
those existing in some zones of Larderello: 
1-caprock, 2-carbonate formations, 3-fractured 
quartzites and phyllites, and 4-phyllites. 
(XBL 8012-12874) 

Temperature OC Pressure bar 
230 240 250 260 270 0 10 20 30 40 50 60 

water saturation 
0.5 1 

Figure 22. Initial conditions for the model of Figure 21. 
* (XBL 8012-12875) 
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I 
w 

a) 
t 1 5 0 m  

b) 

c )  
d )  

- t 6 0 0 m  

t 800 m 

1000 m 

. Figure 23. Depths of injection for cases a), b), c), d). 
'(XBL 8012-12872) 

*- I---- 

Figure 24. D i s  tization effects in simulations of the 
ion of cold water in superheated steam 

the reservoir. a)production rate, 
saturation (immobile water saturation 

U 

c) boiling rate. (XBL 8012-12877). 
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Figure 23 where the thickness of the elements around the inject ion point is 3 m. 

In  t h i s  example, boundary pressure at the bottom i s  a l i t t l e  higher than i n  

Figure 22. 

As the  injected water en ters  element no. 1, it is soon vaporized, the  

rock and f lu id  both having the same temperature at a l l  times. 

u n t i l  sa turat ion conditions are reached i n  the element. From t h i s  moment on 

not a l l  the water is vaporized, the production rate begins t o  decrease, and 

l iquid saturat ion increases i n  the eiement. 

the model is controlled by the following phenomena: 

This continues 

Subsequently the behavior of 

- l iquid water flows gravi ta t iona l ly  ( i n  t h i s  case) from one element 

t o  the underlying one each t h e  the immobile water saturat ion is 

exceeded in  the former; 

- a l l  the l iquid water entering an element is vaporized u n t i l  

sa turat ion conditions are reached in  it; 

- vaporization (and, hence, production) starts t o  increase whenever 

the l iquid penetrates a new element i n  which P < Psat. 

vaporization begins decreasing whenever a new element reaches 

saturat ion conditions. 

- 

The amplitude and frequency of the osc i l la t ions  depends on space 

d iscre t iza t ion ,  on the difference between i n i t i a l  temperature and saturat ion 

temperatures i n  the elements penetrated by the l iquid water, on the pressure 

var ia t ions in  these elements, and on the shape of the r e l a t ive  permeability 

curves for  the two phases. 

Our simulation tests have always shown tha t  a f ine r  space d iscre t iza t ion  

w i l l  reduce the amplitude and increase the frequency of the  osc i l la t ions .  

Moreover, i n  the case of d i sc re t i t a t ions  tha t  are not too coarse, the  

, 

osc i l l a t ions  a l l  occur around an average curve; the  r e su l t  of numerical 

simulation gradually approaches t h i s  curve as the space d iscre t iza t ion  

becomes f ine r  (see Figure 25, r e l a t i v e  t o  the same case as Figure 24) .  
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. I -1 I' . ,  
Figure 25. Results of simulations with different s i zes  

of the grid elements i n  the linear flow model. 
a) A2 = 6.66 m, b) AZ = 3m, and c) AZ = 1 m. 
(XBL 8012-&2876) 

I ,  
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The r e l a t i v e  permeabi l i ty  of t he  two phases i s  a very important parameter 

f o r  r e i n j e c t i o n  as it a f f e c t s  both the  pressure gradient  and l i qu id  propagation 

through t h e  rock volume. 

cr i ter ia  at  present  f o r  a t t r i b u t i n g  one given r e l a t i v e  premeabili ty curve t o  

the  var ious  r e se rvo i r  rocks. Figure 26 shows some t h e o r e t i c a l  and empir ical  

Unfortunately,  t h e r e  would appear t o  be no s a f e  

curves. 

Curve a )  was obtained from a vers ion  of Corey's equation. 

s w  - swc 4 
Km(sw) = (1 - swc - sgc) I 

Krs = 0 

with Swc = 0.3, Sgc = 0 .  

f o r  Swc < Sw < 1 - Sgc 

for  Sw 1. Swc 

fo r  Sw 1 - Sgc 

This i s  the  parametr izat ion genera l ly  used i n  our one-dimensional model. 

Curve b) i s  der ived from Wairakei production data .  The parabol ic  curves 

i n  Figure 26c were used by some authors  to  s imulate  two-phase reservoirs 35 , 

while curves d) were based on prel iminary labora tory  r e s u l t s  obtained a t  

Stanford University.36 

va r i ed  they can be. 

These curves were taken as an example of j u s t  how 

The model's behavior is s t rongly  a f f ec t ed  by the  choice of r e l a t i v e  

permeabi l i t i es .  

t h e  d i s c r e t i z a t i o n  e f f e c t s  mentioned e a r l i e r .  

Usually a high Krw f o r  l o w  water s a t u r a t i o n  values  a t t enua te s  

Figure 27, r e l a t i v e  t o  the  case 
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i 

Figure 26. Examples f relative permeability 
curves for water and steam. 
(XBL 8012-12871) 
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of Figure 24 with a 3 m space d iscre t iza t ion  i n  the inject ion zone, shows tha t  

the  osc i l la t ions  are great ly  reduced with the "Wairakei curve". While the 

osc i l l a t ions  in  the two curves derive from f i n i t e  space d iscre t iz t ion ,  the 

difference i n  average production r a t e  from one case to  the 

of a difference in  behavior of reservoirs with d i f fe ren t  re la t ive  permeability 

curves. 

l iquid propagates through a larger  rock volume, which thus implies higher 

boi l ing rates. 

t is a r e su l t  

In  the case of curve b), the period of inject ion being equal, the  

Figure 28 shows the var ia t ions i n  production rate coming from in jec t ing  

20 k g / ( s e c * d )  at  d i f fe ren t  depths. 

The production rate increase c lear ly  diminishes when inject ion is  made a t  

g rea te r  depth. 

product ion decrease. 

Inject ion in to  the saturated zone even brings about a s l i gh t  

Considering cases a ) ,  b ) ,  and c) only, the var ia t ion of production w i t h  

depth of inject ion is  due t o  the following facts :  

- vaporization of the injected water produces a pressure increase in  

the inject ion zone, with a consequent increase i n  the gradient above 

and reduction in  tha t  below t h i s  zone. Vaporization of injected 

water, therefore,  contributes t o  production, but a l so  reduces the  

contribution from deep boiling; 

- the  f lu id  state i n  the deep horizons is  nearer the saturat ion then 

i n  shallower layers;  

the  l iquid saturat ion build-up i n  the inject ion zone reduces the 

r e l a t ive  permeability t o  steam; 

- 

- t he  pressure increases below the inject ion horizon. In the 

par t s  of the reservoir  containing two-phase f lu id  even a small 

pressure increase can s top boi l ing and start condensation. 

Figure 29 shows the evolution of saturat ion around the  inject ion point 

In  the la t ter ,  more l iquid accumulates in  the inject ion i n  cases a) and c). 
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~ Figure 28. Effect of injection depths i n  the 
linear flow model' (smoothed curves) . 
(XBL 8012-12870) I 

j 
I 

I 

I 
I 

steam saturation 
0 

Figure 29. Saturation around the injection point i n  cases 
a) and c )  of Figure 23. (XBL 8012-12878) 
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zone. Furthermore, while the  l i q u i d  flows downwards by g r a v i t y  i n  t h e  higher  

permeabi l i ty  formations, t he  pressure gradient  i n  the  low permeabili ty deep c 
formations is  high enough t o  overcome g rav i ty  and the  l i q u i d  is  c a r r i e d  upwards. 

Obviously a one-dimensional model can reproduce only pa r t  of t he  phenomenology of  

a three-dimensional r e se rvo i r  with d i s t a n t  i n j e c t i o n  w e l l  However, t h e  

r e s u l t s  of t h i s  s impl i f ied  model are i n  agreement with t h e  observat ions made at 

Lardere l lo  with regard t o  shallow and deep in j ec t ion .  

t h e  temperature of t he  steam produced at  t he  top  of t he  r e se rvo i r  remains 

I n  a l l  these  examples, 

pract- ical ly  constant .  

i n j ec t ed  water ( a f t e r  mixing with steam from deep bo i l ing )  c rosses  a hot  rock 

l aye r  unaffected by boi l ing .  Usually it is des i r ab le  t h a t  t h e  steam produced 

from in j ec t ed  water crosses a c e r t a i n  i n t e r v a l  of hot rock before  reaching  the^ 

producing wells. I f  t he  i n j e c t i o n  point i s  too near  t h e  ex t r ac t ion  poin t ,  t h e  

thermodynamic c h a r a c t e r i s t i c s  of t h e  f l u i d  are adversely a f f ec t ed ,  with the  r i s k  

of e f f i c i ency  reduct ion i n  the  conversion phase. On t he  o the r  hand, i f  too 

l a rge  rock volumes are le f t  out  of i n j e c t i o n ,  t h i s  may cause a reduct ion i n  

This i s  due t o  the  fact: t h a t  t he  steam produced from 

recovery of  t h e  reserves .  

8. Conclusions 

I n j e c t i o n  i n t o  a two-phase r e s e r v o i r  usua l ly  prolongs i ts  economic 

production and increases  the  recovery f a c t o r ,  bu t  may decrease the  production 

rate i n  the  short-term. 

explo i ted  over a very long per iod without r e i n j e c t i o n ,  t h e  condi t ions are now 

such as t o  permit a higher  long-term recovery as w e l l  as increased short-term 

production. In  favorable  s i t u a t i o n s  t h i s  can be obtained without de t r imenta l  

e f f e c t s  on the  thermodynamic c h a r a c t e r i s t i c s  of the  f l u i d  produced. 

i n j ec t ed  water contains  minimal amounts of noncondensable gas and is quickly 

vaporized, t h e  chemical c h a r a c t e r i s t i c s  of the  steam produced may even improve, tr 

In  a f i e l d  such as Lardere l lo ,  which has  been 

As t he  

c 

t o  the  advantage of conversion e f f i c i ency .  
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. The app l i ca t ion  of numerical s imulat ion t o  the:study of r e i n j e c t i o n  

W r evea l s  how usefu l  t h i s  approach c be, even though it is confined 

There have been too  f o r  t h e  moment t o  i d e a l  systems o r  p a r t i c u l a r  problems. 

few , f i e ld  d a t a  ava i l ab le  so f a r  t o  show whether the  model of  t he  porous 

medium i s  capable of s imulat ing f rac tured  r e s e r v o i r s  i n  which rock-fluid 

hea t  exchange is the  dominating phenomenon. . -+ 

Simi lar ly  the  lack  of information on r e l a t i v e  permeabili ty,  which a l s o  

has  a s t rong inf luence  on the  phenomena, prevents formation of f u l l y  r e l i a b l e  

models. Field and labora tory  tests w i l l  consequently play an important role 

’ i n ‘ t h e  near  fu tu re .  P a r t i c u l a r l y  important is t o  iden t i fy ,  i n  t h e  geothermal 

f i e l d ,  t h e  zones i n  which P < Psa t ,  t he  volumes involved, and the  reservoir 

c h a r a c t e r i s t i c s .  In j ec t ion  i t s e l f  could be used f o r  t h i s  purpose. Simulation 

of i n j e c t i o n  i n  a r e se rvo i r  whose f l u i d  i s  superheated steam poses some 

problems: a very f ine  space desc re t i za t ion  must be used and the  t i m e  s t e p  

must a l s o  be shortened when cross ing  the  sa tu ra t ion  l i n e  i n  the  water equat ion 

of state diagram. However, it i s  f e l t  t h a t  approximate r e s u l t s  acceptable  t o  

t h e  engineer can be achieved even i n  these  circumstances a t  a reasonable cos t .  

F ina l ly ,  it should be noted t h a t  P < Psat  does not always imply t h a t  

only superheated steam exists  in the porous medium. 

can be produced by s a l i n i t y ,  c a p i l l a r i t y ,  and adsorpt ion phenomena. 

phenomena also r equ i r e  more d e t a i l e d  study. 

Vapor pressure lowering 

These 

I n  summary, our  i nves t iga t ions  t o  da t e  r e s u l t  i n  t he  following general  

conclusions: 

1. Numerical s imulat ion i s  a v a l i d  and v i ab le  t o o l  f o r  studying 
I 

i n j e c t i o n  i n t o  two-phase r e se rvo i r s .  

I I 
2. In j ec t ion  w e l l  tests i n  t h i n  formations can be analyzed by 

means of single-phase pressure t r ans i en t  techniques. 

In j ec t ion  i n t o  a producing two-phase r e se rvo i r  may enhance 
I -u 
I 3.  
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ultimate energy recovery by large amounts, with small e f f e c t s  - 
on power output. L.i 

4. 

5.  

Gravity e f f e c t s  can be very strong i n  thick reservoirs.  

Inject ion in to  superheated steam zones may increase production rates 

as well as energy recovery. 

It is suggested tha t  future  work on modeling inject ion should invest igate  

the  e f f ec t s  of f ractures .  

f i e ld  cases ra ther  than idealized problems. 

Also, e f f o r t s  should be made for  modeling actual  

i 

i 
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,- 
APPENDIX L, 

F 
Consider i n j e c t i o n  of cold water with temperature T i n ' a t  constant 

rate q i n t o  a t h i n  i n f i n i t e  two-phase r e s e r v o i r  w i t h  u n i f o m . i n i t i a 1  condi t ions  

(temperature Tres ,  vapor s a t u r a t i o n  S). We pos tu l a t e  t h a  he  .process w i l l .  

g ive  rise t o  a sharp temperature f r o n t ,  where reservoir temperature changes 

1 
I 

I 
i 

from Tin t o  Tres, and proceed t o  e s t i m a t e . t o t a I  swept volume Vs and 

volume of t he  cold zone, Vc. 

Neglecting the  dens i ty  of steam i n  comparisbn' to ' th 'a t  ofAliquid water, 

f o r  t h e  t o t a l  i n j ec t ed  mass: 

M q t  = Vs+SP; + Vc4(Pw - PA) (A.1) 
. -  

where P, and pW' are l i qu id  water d e n s i t i e s  a t  i n j e c t i o n  temperature T i n  

and r e se rvo i r  temperature T r e s ,  respec t ive ly .  

For the  t o t a l  i n t e r n a l  energy of t he  swept volume we have: 

E = V c k P w C w  + (1 - +)PRCR] Tin 

I This is approximately equal t o  the  t o t a l  i n t e r n a l  energy present  i n  swept 

volume and i n j e c t i o n  f l u i d  separa te ly  (negl'ecting small steam cont r ibu t ions)  : 

! E = Vs(l - +) pRCd Tres + MCwTin + V s + ( l  - S) PGCw Tres 

I 
I from which: 
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The l o c a t i o n ~ o f  t h e  thermal f ront  can be used t o  estimate porosity,  i n  

t he  following way. A t  t i m e  t ,  the  t o t a l  amount of in jec ted  f l u i d  is q t .  

t h i s ,  an amount Vc4Pw i s  s t i l l  at in j ec t ion  temperature, while an amount 

( q t  - Vc4Pw) has  moved on and has been heated up t o  Tres. 

t h a t  t h e  energy t r a n s f e  

Of 
6/ 

Assuming 

d t o  t h e  f l u i d  was supplied by t h e  cooled rock, fre 

have: 

from which, using Vc = n&2H: 

4 =  (A.7  




