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INTRODUCTION 

The purpose o f  t h i s  b r i e f  presentation i s  t o  discuss a number o f  commonly employed 
geochemical and geophysical methods i n  geothermal reservo i r  i d e n t i f i c a t i o n ,  both 
t h e i r  assets and shortcomings. The l a t t e r  must be discussed e x p l i c i t l y ,  because 
lack  of appreciat ion o f  the p i t f a l l s  o f  each o f  the employed methods may lead t o  
unwarranted conclusions regarding the existence o f  a geothermal reservoir ,  and i t s  
expected temperature and volume. 

The term reservo i r  i n  i t s e l f  must be caut iously employed. A geothermal reservoir,  
especial ly a liquid-dominated reservoir ,  cannot be l ikened t o  a petroleum reser- 
vo i  r, where the resource i t s e l  f has a d e f i n i t e  mass and f a i  r l y  we1 1 -defined 
boundaries. Petroleum cannot be replenished a t  a r a t e  t h a t  has any meaning i n  
terms o f  a l i f e  o f  a power plant.  On the other hand, a geothermal reservoir  may 
receive very s i g n i f i c a n t  cont r ibut ions o f  both heated f l u i d ,  colder water and heat 
during the l i f e  span o f  a power p l a n t  (one-third o f  a century). 
d e f i n i t i o n  o f  reservo i r  must be made more e x p l i c i t  and must s ta te  whether the 
dynamics o f  the system (i.e., recharge region o f  heat and water, and recharge 
ra te )  a re  included i n  the area defined as a reservo' 

Hence, the 

- 
GEOCHEMICAL METHODS 

Surface geochemical methods provide important c lues as t o  the nature o f  the geo- 
thermal system i n  a region, whether liquid-dominated o r  dry steam (vapor) 
dominated, whether sa l ine o r  brackish, whether s ing le reservo i r  system o r  a mix of 
two systems o r  a dry steam system leaking i n t o  a liquid-dominated system. 
However, assert ions based upon geochemical data are f raught w i t h  p i t f a l l s  due t o  
unfu l  f i l l  ed condi 

temperature o f  1 iquid-dominated reservoirs,  and f o r  i d e n t i f y i n g  the presence o f  
vapor-dominated reservoirs. 
d issolve a known amoun o f  s i l i c a  a t  t h a t  temperature. As the reservo i r  f l u i d  
cools from i t s  o r i g ina  temperature t o  a much lower temperature as i t  t rave ls  
towards the surface, i may r e t a i n  most o f  the dissolved s i l i c a  i n  solut ion. 
Thus, the dissolved s i l i c a  i n  so lut ion foss i  1 thermomete 
the minimum reservoi r temperatures. 

One problem w i t h  s i l i c a  thermometry, which-may tend t o  cause an overestimation o f  
reservo i r  temperature, i s  t h a t  o f  assuming quartz s o l u b i l i t y  vs temperature as the 
c a l i b r a t i o n  curve. 
amorphous s i l i c a  a reTresen t  i n  an abundant amount i n  the host rock, the quartz 
sol ubi1 i ty geothermometry would provide an unduly op t im is t i c  reservo i r  temperature 
estimate. 

o t  springs a t  the surface provides means f o r  dete 

A geothermal reservo i r  a t  any given temperature w i l l  

I f  other types o f  s i l i c a ,  such as opal, c r i s t o b a l l i t e  o r  
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An unduly pessimist ic estimate o f  reservo i r  temperature, based upon s i 1  i c a  
thermometry, may be a r r i ved  a t  when there has been d i l u t i o n  o f  the o r i g i n a l  reser- 
v o i r  l i q u i d  w i th  shallower, colder ground water; when the actual reservo i r  temper- 
ature i s  above 180°C (356°F); when the r a t e  o f  movement o f  the geothermal l i q u i d  
t o  the surface has been very slow, and when a h igh -so lub i l i t y  o f  s i l i c a  (e.g., 
amorphus s i l i c a  s o l u b i l i t y )  has been assumed whi le quartz s o l u b i l i t y  would have 
been more appropriate. 

The s o l u b i l i t y  r a t i o  o f  Na/K i s  another o f ten  p l  oyed geochemical thermometer. 
The Na/K r a t i o  i n  geothermal water i s  inversely proport ional  t o  temperature, f o r  
the temperature range o f  geothermal water. The advantage o f  the Na/K r a t i o  i s  
that ,  l i k e  any other r a t i o ,  i t  i s  n o t  a f fected by d i l u t i o n  by pure water. Yet, 
many problems may occur i n  the use o f  the Na/K geothermometer. The s o l u b i l i t y  o f  
Na and K i n  co ld  ground water i s  qu i te  d i f f e r e n t  from t h a t  i n  the geothermal 
range, o r  a l t e rna t i ve l y ,  no equi l ibr ium w i t h  temperature i s  normally a t ta ined a t  
normal surface water temperature. However, advance know1 edge o f  equi l ibr ium 
condi t ions i n  the source rock i s  n o t  known. Hence, other v e r i f i c a t i o n  approaches 
are required. Another possible thermometer i s  the Ca/K thermometer, inasmuch as 
Ca s o l u b i l i t y  i s  inversely re la ted  t o  temperature. Some workers (Fournier and 
Truesdell ) have recommended combining Na-K-Ca i n t o  one s ing le thermometer, by 
using ce r ta in  empir ica l ly  derived relat ionships.  

Discrepancy between d i f f e r e n t  geothermometers may serve as a warning t h a t  the 
simplest ru les  o f  chemical thermometry are n o t  necessari ly f u l f i l l e d .  Further- 
more, an agreement between independent geothermometers i n  themselves does n o t  pro- 
vide assurance against f o r tu i t ous  coincidence. 

GEOPHYSICAL METHODS 

E l e c t r i c a l  r e s i s t i v i t y  methods, both ac t i ve  and passive, may provide important 
informat ion on the l oca t i on  o f  reservo i rs  and t h e i r  dimensions, o r  the occurrence 
o f  a heat source nearby and i t s  geometry. Under especial ly favorable conditions, 
r e s i s t i v i t y  data may be employed t o  provide semiquanti tat ive data on r e l a t i v e  
s a l i n i t i e s ,  r e l a t i v e  temperatures, and r e l a t i v e  porosity. Without exception, a l l  
known 1 i q u i  d-domi nated reservoirs anywhere i n  the worl d are characterized by 
e l e c t r i c a l  r e s i s t i v i t i e s  t h a t  are lower than those o f  the surrounding rocks. Most 
1 iquid-dominated geothermal reservoirs are characterized by r e s i s t i v i t i e s  less 
than 5 ohm-meters, no matter how high the r e s i s t i v i t y  o f  the surrounding country 
rock. 

E l e c t r i c a l  r e s i s t i v i t y  i s  a f fected by f i v e  d i f f e r e n t  factors:  

( 1 ) Tem erature. A t  temperature ranges o f  20-300°C (68-572"F), the 

the main conductive component o f  the system. E l e c t r i c a l  conduc- 
t i v i t y  o f  e lec t ro l y tes  increases by about 2.5% per degree 
centigrade. A t  temperatures near me1 ti ng (500-1000°C 
[932-1832"F]), matr ix  conduct iv i ty becomes important. The 
r e s i s t i v i t y  o f  some s i l i c a t e  rocks a t  mel t ing i s  1-2 ohm-meters. 

s a l i n i t y  o f  the pore-f luid. 

the square o f  porosity. 

e l e c t r i c a  + conduct iv i ty o f  the e lec t ro l y te ,  the water, provides 

(2) Sa l i n i t y .  E lec t r i ca l  conduct iv i ty var ies almost l i n e a r l y  w i t h  

(3 )  Porosity. E lec t r i ca l  conduct iv i ty increases approximately w i t h  
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( 4 )  Formation Factors. Tortuosi ty o f  the pore space decreases i t s  

(5 )  

e l e c t r i c a l  conduct iv i ty  ( increasing the ' formation factor '  1. 

Clay Content. The higher the c l a y  content, the higher the matr ix  
conduct iv i ty  o f  the rock. 

W 

Were these f i v e  factors  t o t a l l y  independent o f  each other, r e s i s t i v i t y  studies 
would be useless i n  geothermal explorat ion. I n  r e a l i t y ,  many o f  these factors  
vary together, amp1 i f y i n g  the e f f e c t  o f  temperature very s ign i f i can t l y .  Thus, as 
temperature increases, s a l i n i t y  increases, because o f  the higher dissolv ing power 
o f  warmer water. Porosi ty may increase because o f  the higher s o l u b i l i t y  o f  rocks 
a t  e l  evated temperature, and hydrothermal a1 t e r a t i o n  may increase the c l  ay-1 i ke 
mineral content o f  the rocks. 

Yet, undue re l iance on e l e c t r i c a l  r e s i s t i v i t y  alone may r e s u l t  i n  d r i l l i n g  
expensive holes i n t o  co ld  b r i ne  pools o r  l a rge  c l a y  bodies. R e s i s t i v i t y  must be 
corroborated by other geological, geophysical, o r  geochemical data before 
commitments f o r  deep d r i l l i n g  a r  

Gravimetry has o f ten  been employed f o r  mapping o f  the geological s t ructure i n  the 
given area. Gravi ty lows have been assigned t o  the e f f e c t  o f  mel t ing on density 
(The Geysers, Cal i forn ia) ,  collapsed caldera e f f e c t s  (Mono Lake, Ca l i f o rn ia )  and 
increase i n  sedimentary column thickness. Gravity highs have been re la ted  on ra re  
occasions t o  dens i f i ca t i on  o f  sediments by hydrothermal f l u i d s  and t o  co ld  
magmatic intrusions. Gravimetry has been employed p r i m a r i l y  as an a u x i l i a r y  
s t ruc tu ra l  too l ,  ra the r  than a d i r e c t  explorat ion tool.  On one occasion (East 
Mesa, Cal i forn ia ,  f i e l d ) ,  g rav i t y  data was employed f o r  est imating convective heat 
flow rates, by ascr ib ing the densi f icat ion o f  the rocks t o  depositioned e f f e c t s  
from a cool ing convective plume ( L ) .  I n  another case (Wairakei, New Zealand), 
changes i n  g rav i ta t i ona l  a t t r a c t i o n  over the producing f i e l d  were converted i n t o  a 
mass-loss estimate and compared he actual mass loss due t o  production o f  geo- 
thermal f l u i d s  (2). That compar showed t h a t  the gravimetr ical  ly-determi ned 
mass loss  i s  abo'iit one-third lower than the actual mass loss, i nd i ca t i ng  t h a t  
s i g n i f i c a n t  recharge i s  t ak ing  placCr. A s im i l a r  use o f  gravimetry i s  being 
present ly made o f  g r a v i t y  i n  T sers by the U.S. Geological Survey (USGS). 

Microearthquake sei smol ogy has ed an increasing u t i l i z a t i o n  as a geothermal 
explorat ion tool.  Westphal and Lange have observed the empir ical co r re la t i on  
between higher microseismici ty i n  The Geysers area and the area o f  dry steam 
occurrence ($1. Simi lar  reports have been made by invest igators  i n  Iceland, 
Kenya, E l  Salvador, and elsewhere (see, f o r  example, 5).  
t o  note t h a t  microseismici ty can occur extensively i n  non-thermal areas. Thus, 
microseismici ty i s  a necessary b o t  a su f f i c i en t  condi t ion f o r  geothermal 
reservoirs. 

An even less  d e f i n i t e  statement may be made w i t h  regard t o  ground noise, the 
continuous v i b r a t i o n  o f  ground a t  y point. While some co r re la t i on  has been 
shown t o  e x i s t  between ground nois  and some productive geothermal areas, the 
number of high-amplitude ground noise areas has been so l a rge  t h a t  any statement 
r e l a t i n g  ground noise t o  geothe reservo i r  occurrence must be treated w i t h  the 
greatest  caution. 

Temperature gradient measurements can be most valuable i n  del ineat ing promising 
structures. Yet, the u t i l i z a t i o n  o f  thermometric data must be treated w i t h  the 
greatest  o f  caution, i f  any extrapolat ion i s  attempted. 
safe, as data from Marysvi l le,  Montana, Dunes, Cal i forn ia ,  San Miguel, Azores, 
would show. I n  the f i r s t  two mentioned examples, a very steep shallow gradient 
changes +into a f l a t  o r  even negative gradient a t  depth. 

However, i t  i s  important 

No extrapolat ion i s  ever 

I n  the l a s t  case, a very W 
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f l a t  gradient changes i n t o  a very steep one a t  a depth o f  about 100 meters 
(330 ft). 
a depth below the zone o f  desaturation o r  extensive downward ground water flow. 
Temperature gradient data i n  i t s e l f  i s  r e l i a b l e  only t o  the depth t h a t  the hole 
has been d r i l l e d  and no more. Extrapolat ions must be always supported by other 
data. 

I n  d r i l l i n g  i n  h igh l y  pervious strata,  i t  i s  most important t o  d r i l l  t o  

In tegrat ion o f  a number o f  techniques, such as resistivity-plus-geochemistry-plus- 
thermometry w i l l  always lead t o  resu l t s  t h a t  are superior t o  those from the 
appl icat ion o f  a s ing le method. Judgment and regional experience w i l l  determine 
the degree o f  success i n  f i nd ing  economical l y  v i  ab1 e geothermal reservoi rs. 
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