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ABSTRACT 

Over the  las t  s e v e r a l  yea r s ,  t he  Bureau of Land 
Management (BLM) h a s  s tud ied  the  accuracy of 
steam f lowmeters used f o r  de te rmining  f e d e r a l  
r o y a l t y  a t  The Geysers geothermal f i e l d .  
Accuracy c a l c u l a t i o n  methods descr ibed  by R.W. 
Miller3 were used as the  b a s i s  f o r  t h i s  
s tudy .  The e n t i r e  meter ing  system inc lud ing  
primary device ,  secondary device ,  and f low 
c a l c u l a t i o n  methods a r e  considered when 
determining accuracy. P o t e n t i a l  sources  of 
e r r o r  a r e  i d e n t i f i e d  and c l a s s i f i e d  i n t o  t h r e e  
ca t egor i e s .  Examples of t h e  main causes of 
inaccuracy  and poss ib l e  methods t o  improve 
accuracy are given. 

'I#TBODUCTIOt4 

Even i f  a steam flowmeter is i n  good cond i t ion  
and proper ly  c a l i b r a t e d ,  meter accuracy a t  The 
Geysers can range from b e t t e r  than 21% t o  worse 
than  220%. Accurate measurement of steam is 
important f o r  s e v e r a l  reasons .  Of primary 
concern t o  the  BLM is determining r o y a l t y  from 
f e d e r a l  leases. 

Under the  a u t h o r i t y  of the  Geothermal Steam A c t  
of 19709, a s  ammended, t he  f e d e r a l  government 
c o l l e c t s  a r o y a l t y  on the  va lue  of t he  
geothermal resource  produced from f e d e r a l  l and .  
For those s i t u a t i o n s  where va lue  i s  based on 
steam quan t i ty ,  r o y a l t y  is der ived  from steam 
f lowmeters. The BLM requ i re s  t h a t  dry-s team 
f lowmeters used f o r  r o y a l t y  de te rmina t ion  must 
be accu ra t e  t o  a t  least +4% of the  a c t u a l  
f low8. 

Aside from sales and r o y a l t y ,  flowmeter accuracy 
is important f o r  f i e l d  ope ra t ion  and r e s e r v o i r  
engineer ing .  Decline curve a n a l y s i s ,  f o r  
example , r e q u i r e s  a s t a b i l i z e d  f lowra te  
h i s t o r y .  Inaccura t e  measurements could a l ter  
the  r e s u l t s  of t he  a n a l y s i s  and a f f e c t  a 
reservoi r -engineer ing  dec i s ion .  Most steam- 
f i e l d  ope ra t ions  are con t ro l l ed  by computers 
u s ing  f lowra te  d a t a  f o r  i npu t .  Accurate 
f l o w r a t e  d a t a  can r e s u l t  i n  more p rec i se  and 
e f f i c i e n t  ope ra t ion  of t he  f i e l d .  

D i f f e r e n t i a l  f lowmeters a r e  used almost 
e x c l u s i v e l y  f o r  f lowra te measurement a t  The 
Geysers.  D i f f e r e n t i a l  flowmeters c o n s i s t  of a 

primary device  and a secondary device .  The 
primary device  causes a p red ic t ab le  and 
measureable p re s su re  drop  i n  the  steam p i p e l i n e  
t h a t  corresponds t o  the  f lowra te  being 
measured. The secondary device r ece ives  the  
p re s su re  and temperature s i g n a l s  from the  
primary device  and conver t s  them i n t o  numeric 
va lues  from which f lowra te  can be determined. 

The types  of primary dev ices  used a t  The Geysers 
are o r i f i c e  p l a t e s ,  Annubars ( s p e c i a l  type  of 
p i t o t  t ube ) ,  and ven tu r i s .  O r i f i c e  p l a t e s  and 
Annubars a r e  gene ra l ly  used f o r  wellhead f low 
measurement, whereas ven tu r i s  are used t o  
measure steam f low i n t o  a powerplant. 

A l l  secondary devices  used f o r  r o y a l t y  
de t e rmina t ion  a t  The Geysers are e l e c t r o n i c .  
They c o n s i s t  of a d i f f e r e n t i a l  p ressure  (DP) 
t r a n s m i t t e r ,  l i n e  p re s su re  (LP) t r a n s m i t t e r ,  
temperature t r a n s m i t t e r  ( i n  some cases) , and a 
f low computer and r e l a t e d  hardware and 
sof tware .  A t r a n s m i t t e r  is a t ransducer  t h a t  is 
capable of sending  the  output  s i g n a l  long  
d i s t a n c e s  without l o s s  o r  d i s t o r t i o n .  

FLOW EQUATIONS 

The equat ions  used t o  determine f lowra te  from 
LP, DP, and temperature are combinations of 
theory  and c o r r e c t i o n  f a c t o r s  der ived  from 
empi r i ca l  d a t a .  Whereas Bernou l l i ' s  Law is  the  
b a s i s  f o r  t he  f low equa t ions ,  l abo ra to ry  d a t a  
must be used t o  c o r r e c t  Be rnou l l i ' s  l a w  f o r  
real-world p r o p e r t i e s  such as v i s c o s i t y ,  
compress ib i l i t y ,  and f low p r o f i l e .  

I n  l abora to ry  experiments , d i f f e r e n t  types  of 
primary devices  were set  up and methodica l ly  
t e s t e d .  Known f low rates were run through each 
primary device .  For each known f lowra te  LP, DP, 
and temperature are measured and a t h e o r e t i c a l  
f l owra te  is c a l c u l a t e d .  Di f fe rences  between the  
known f lowra te  and the  ca l cu la t ed  f lowra te  
arise. Causes f o r  t hese  d i f f e r e n c e s  were 
examined and, based on the  l abora to ry  d a t a ,  a 
c o r r e c t i o n  f a c t o r  was der ived  f o r  each cause.  

From Bernou l l i ' s  l a w  and l abora to ry  d a t a ,  t he  
fo l lowing  mass f low equat ion  is der ived7  : 

Q = 358.93SD2FaFcY(hJ)*5 
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where : 

Q =mass f lowra te ,  l b s / h r  
S = f low index based on prfmary-device 

D = average i n s i d e  d iamter  of meter tube ,  

Fa = thermal expansion f a c t o r  
Fc = Reynolds number c o r r e c t i o n  f a c t o r  
Y = gas  expansion f a c t o r  
hw = DP, inches  water column (w.c.) 
d = f l u i d  d e n s i t y ,  l b s / f t 3  

geometry 

inches  

SOURCES OF ERROR 

When determining meter accuracy, many sources  of 
e r r o r  must be considered. Sources of e r r o r  can 
be broken down i n t o  t h r e e  major a reas :  primary 
dev ice  e r r o r s ,  secondary device  e r r o r s  , and f low 
equa t ion  e r r o r s .  

Primary Device E r r o r s  

Laboratory experiments are done t o  determine the 
accu rac i e s  of d i f f e r e n t  types  and s i z e s  of 
primary devices .  By running known f lowra te s  
through a device  many times, the  range o€ e r r o r  
between the  known and ca l cu la t ed  f lowra te s  is  
found. This  range of e r r o r  i s  the  accuracy of 
t he  device .  

When i n s t a l l i n g  a primary device  i n  the  f i e l d ,  
the  l abora to ry  cond i t ions  used t o  determine the  
c o r r e c t i o n  f a c t o r s  and accuracy va lues  f o r  t h a t  
dev ice  must be dup l l ca t ed  as c l o s e l y  as 
poss ib l e .  D i f f e rences  i n  t h e  f i e l d  se t  up w i l l  
cause  e r r o r s  i n  the  c o r r e c t i o n  f a c t o r s  and a l t e r  
the  accuracy va lues  determined i n  the  l abora to ry .  

The accuracy va lues  f o r  each type and s i z e  of 
primary device  given i n  l i t e r a t u r e  assume the  
f ollowing cond i ti ons : 

1. 

2. 

3.  

4. 

5 .  

I n s t a l l a t i o n .  Absence of p r o t r u s i  ons such 
as m i  s - a l i  gned f l anges  , gaske ts  , bo1 ts , o r  
welds,  and s p e c i f i c  conf igu ra t ions  and 
l o c a t i o n s  of pressure  t aps  and thermowells 
are assumed. The primary device  i s  assumed 
t o  be i n s t a l l e d  i n  accordance wi th  the 
manufacturers s p e c i f i c a t i o n s .  

Meter Tube Length. Minimum leng ths  of 
s t r a i g h t  and un in te r rup ted  p i p e l i n e  (meter 
tubes)  a r e  assumed t o  be present  both before  
and a f t e r  t he  primary device .  A g r e a t  d e a l  
of work has  r e c e n t l y  been done t o  quan t i fy  
the  e f f e c t s  of meter tube l eng th .  

Meter Tube Condi t i o n .  Ce r t a in  roughnesses 
of t he  i n s i d e  of t he  meter tubes  are 
assumed. The meter tube i s  assumed t o  be 
round wi th in  s p e c i f i c  t o l e rances  and t o  be 
f r e e  of p i t s  o r  pockets.  

Reynolds Number. The Reynolds number of the  
f low through the  primary device  i s  assumed 
t o  be a minimum value .  

Phys ica l  Condi t i o n .  L i  t e r a t u r e  accuracy 

6 .  

7 .  

8. 

va lues  assume t h a t  t he  primary dev ice  has  
c e r t a i n  s p e c i f i c  dimensions and 
c h a r a c t e r i s t i c s .  An o r i f i c e  p l a t e ,  f o r  
example, is  assumed t o  have a s h a r p  upstream 
edge, a c e r t a i n  th ickness ,  have a smooth 
upstream f i n i s h ,  be f l a t ,  be f r e e  from 
ch ips ,  n i cks ,  o r  scale bui ld  up, and be f r e e  
from d e p o s i t s  on e i t h e r  s i d e  of t h e  o r i € i c e  
p l a t e  . 
Pul sa t ion .  Primary device  accuracy va lues  
are based on f lowra te  t h a t  does n o t  change 
wi th  time. While a l l  flows a r e  s u b j e c t  t o  
some change, t he re  has  been no 
s t a n d a r d i z a t i o n  of the frequency o r  
magnitude of accep tab le  pu l sa t ions .  

Dimensi on Accuracy. When de termining  
o v e r a l l  accuracy, the degree of accuracy  t o  
which primary device  dimensi ons ( p i p e l i n e  
and bore d iameter )  are measured w i l l  e f f e c t  
o v e r a l l  accuracy. 

Therinal Expans i on. Because the  thermal 
expansion f a c t o r  (Fa) is based on 
measurements a t  68"F, measurements taken a t  
temperatures o t h e r  than 68°F w i l l  a f f e c t  
dimension accuracy. 

Secondary Device E r r o r s  

Laboratory de te rmina t ions  of primary device  
accuracy do not  inc lude  e r r o r s  caused by the  
secondary devices .  The LP, DP, and tempera ture  
from the  primary device  must be converted i n t o  
numeric va lues  before  f low can be c a l c u l a t e d .  
Regard less  of how c a r e f u l l y  a t r a n s m i t t e r  i s  
b u i l t ,  i n s t a l l e d ,  o r  c a l i b r a t e d ,  some e r r o r  w i l l  
always be introduced i n  t h i s  conversion. 

The t ransmi t te r -accuracy  s p e c i f i c a t i o n  from the  
manufacturer must be ad jus t ed  t o  take  i n t o  
cons ide ra t ion  changes i n  ambient tempera ture  , 
LP, changes i n  supply vol tage ,  and v i b r a t i o n .  
The amount of adjustment requi red  w i l l  depend on 
the  s p e c i f i c  ope ra t ing  condi t ions .  

1. Ambient Temperature E f f e c t s  . For  a l l  
t ransmi  t ters , s e v e r a l  of t he  sens ing  

ambient - t e m p e  r a t u r  e components are 
dependent. As ambient temperature changes 
from the  ambient temperature a t  t he  time of 
f i e l d  c a l i b r a t i o n ,  e r r o r  w i l l  be 
in t roduced .  The more the  ambient 
temperature changes , the more e r r o r  w i l l  
occur .  A s  the  span of the  t r a n s m i t t e r  is  
reduced, t he  e f f e c t  of ambient tempera ture  
change i s  increased .  

The a c t u a l  temperature change between 
c a l i b r a t i o n s  encountered i n  the  f i e l d  is 
dependent on the  l o c a l  c l imate ,  exposure of 
the  t r a n s m i t t e r  t o  ambi e n t  cond i t ions  , and 
how o f t e n  i t  is c a l i b r a t e d .  A t r a n s m i t t e r  
l oca t ed  i n  a room of cons tan t  tempera ture  
w i l l  exper ience  no ambient-temperature 
change, whereas a t r a n s m i t t e r  mounted i n  the  
open may exper ience  seve re  ambient- 
temperature changes. Also, a t r a n s m i t t e r  
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t h a t  is c a l i b r a t e d  more f r e q u e n t l y  w i l l  
experience less ambient temperature change 
be tween the c a l f  b r a t  i ons . 

2 .  LP E f f e c t s .  The accuracy of DP t r a n s m i t t e r s  
is dependent on LP. A s  LP i n c r e a s e s ,  the DP 
diaphram i n  the t r a n s m i t t e r  becomes somewhat 
d i s t o r t e d  causing a n  increased e r r o r .  Some 
o r  a l l  of t h i s  e r r o r  can be cor rec ted  f o r  by 
us ing  proper c a l i b r a t i o n  techniques.  

3. Vibra t ion .  I f  the  t r a n s m i t t e r  i s  s u b j e c t  t o  
v i b r a t i o n ,  and t h e  amount of v i b r a t i o n  can  
be measured, the r a t e d  t r a n s m i t t e r  accuracy 
can be mathematical ly  ad jus ted  t o  take  the  
v i b r a t i o n  i n t o  cons idera t ion .  I n  The 
Geysers,  most t r a n s m i t t e r s  are not  s u b j e c t  
t o  v i  bra t i  on. 

4. Supply Voltage . Transmi t ter accuracy is  
s u b j e c t  t o  the v a r i a t i o n  i n  the  vol tage  used 
t o  power i t .  

Transmi t te r  accuracy is u s u a l l y  expressed i n  
percent  of f u l l  scale; t h e r e f o r e ,  f u l l - s c a l e  
accuracy must be divided by the  percent  of f u l l  
scale a t  which i t  is  opera t ing  t o  o b t a i n  
accuracy a t  t h a t  p a r t i c u l a r  pressure  o r  
temperature being measured. For example, a 
c e r t a i n  t r a n s m i t t e r  h a s  an accuracy of 2.5% f u l l  
scale and i s  opera t ing  a t  40% of f u l l  scale. 
The accuracy of the t r a n s m i t t e r  a t  the c u r r e n t  
reading (40% f u l l  scale) is: 5.5Xl.4 = 51.25%. 

A t r a n s m i t t e r  i s  a l s o  s u b j e c t  t o  e r r o r s  t h a t  
cannot be used t o  a d j u s t  the accuracy because 
they are not  a p r e d i c t a b l e  f u n c t i o n  of t i m e  o r  
opera t ing  condi t ions:  

5 .  

6 .  

7 .  

8. 

9 .  

Transmit ter  Drif  t . A l l  t r a n s m i t t e r s  l o s e  
t h e i r  a b i l i t y  t o  a c c u r a t e l y  convert  a 
physical  parameter i n t o  an e lectr ical  s i g n a l  
over time. For t h f s  reason,  t r a n s m i t t e r s  
must be c a l i b r a t e d  a g a i n s t  known phys ica l  
parameters p e r i o d i c a l l y  t o  rega in  t h e i r  
accuracy. 

C a l i b r a t i o n  Equipment and Techniques. The 
equipment used t o  c a l i b r a t e  the t r a n s m i t t e r s  
needs t o  be more a c c u r a t e  than the  r a t e d  
accuracy of the  t r a n s m i t t e r ,  bu t  no 
cons is  t e n t  s tandards  have been developed as 
t o  how much more a c c u r a t e  i t  should be. I n  
a d d i t i o n ,  the  c a l i b r a t i o n  must be performed 
t o  manufacturer s p e c i f i c a t i o n s .  

L i n e a r i t y .  It is assumed t h a t  t h e  
t r a n s m i t t e r ' s  ou tput  v a r i e s  l i n e a r l y  w i t h  
the input  parameter.  This can be checked 
and cor rec ted  f o r  i n  the  f i e l d .  

Mounting P o s i t i o n .  Some t r a n s m i t t e r s  w i l l  
experience a s h i f t  i n  ou tput  i f  they are 
mounted i n  a non-vert ical  p o s i t i o n .  This 
s h i f t  can be c a l i b r a t e d  out .  

Pressure  Lead Lines .  I n  c a l c u l a t i n g  
t r a n s m i t t e r  accuracy,  i t  i s  assumed t h a t  the  
pressure  s i g n a l s  going i n t o  the  t r a n s m i t t e r  

are the same as the pressure  s i g n a l s  coming 
from the pressure  taps .  Because of the high 
temperatures  assoc ia ted  wi th  geothermal f low 
measurement, however, the t r a n s m i t t e r s  must 
be i s o l a t e d  from the geothermal f l u i d  being 
measured. The i s o l a t i o n  technique used must 
be c a r e f u l l y  considered o r  a d d i t i o n a l  
s i g n i f i c a n t  e r r o r s  can r e s u l  t4. Typi cal 
i s o l a t i o n  techniques include seal pots  
(above o r  below t h e  pressure  t a p s ) ,  
c a p i l l a r y  tubes ,  and gas-f i l l e d  lead  l i n e s .  

Flow Equat ion E r r o r s  

When LP, DP, temperature,  c o r r e c t i o n  f a c t o r s ,  
dependent v a r i a b l e s  , and cons tan ts  are combined 
i n  t h e  f low equat ion  t o  determine f lowra te ,  the  
fol lowing e r r o r s  are introduced:  

1. 

2. 

3 .  

4. 

I 

5 .  

6 .  

Assuming Fac tors  t o  be Constant.  Correc t ion  
f a c t o r s  i n  the  f low equat ion  are f u n c t i o n s  
of LP, DP, and temperature .  For the  purpose 
of s impl i fy ing  c a l c u l a t i o n  procedures ,  some 
of these  f a c t o r s  can be assumed t o  be 
cons tan t  based on average f low condi t i  ons . 
Whenever the a c t u a l  f low condi t ions  vary 
from the  assumed condi t ions ,  e r r o r s  are 
introduced.  

Approximations of Var iab les .  Other 
v a r i a b l e s ,  such as steam d e n s i t y ,  change 
d r a s t i c a l l y  with changes i n  pressure  and 
temperature  and must be c a l c u l a t e d .  Because 
t h e  equat ions  used t o  c a l c u l a t e  these  
v a r i a b l e s  only  approximate empir ica l  d a t a ,  
e r r o r s  are introduced.  

Assumption That Steam is Satura ted .  I n  
s i  t u a t i o n s  where temperature measurement is  
n o t  p r a c t i c a l ,  the  steam i s  assumed t o  be 
s a t u r a t e d .  When t h e  steam being measured is 
a c t u a l l y  superheated,  the c a l c u l a t e d  
f l o w r a t e  w i l l  be s l i g h t l y  h igher  than the  
a c t u a l  f l o w r a t e  (about .8% high per 10°F of 
superhea t ) .  

Gas Expansion Fac tor .  The pressure  drop  
caused by the primary device causes  the  
steam t o  expand as i t  passes  from t h e  
upstream pressure  t a p  t o  the downstream 
pressure  tap.  

The gas  expansion f a c t o r  is  a term included 
i n  the f low equat ion  t o  c o r r e c t  f o r  t h i s  
expansion. While t h i s  t h e o r e t i c a l l y - d e r i v e d  
f a c t o r  i s  f a i r l y  a c c u r a t e  a t  low DPs, i t  
becomes less a c c u r a t e  as the  DP i n c r e a s e s .  

Assumption t h a t  the Steam is  of 100% 
Qual i ty .  A l l  steam-flow c a l c u l a t i o n s  a t  The 
Geysers assume t h a t  the  f l u i d  being measured 
is 100 percent  vapor. While t h e  v a l i d i t y  of 
t h i s  , assumpti  on i s  c o r r e c t  when measuring 
superheated steam, i t  is not  n e c e s s a r i l y  
c o r r e c t  when measuring s a t u r a t e d  steam. 
Current ly  a t  The Geysers ,  most steam being 
measured is superheated.  

Sampling Frequency. The frequency a t  which 
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S t a t i c  Pressure 
V i b r a t i o n  

LP , DP, and temperature measurements are 
taken and recorded w i l l  a f f e c t  meter 
accuracy. For  r e l a t i v e l y  cons tan t  
f lowra tes ,  one reading per hour  may be 
s u f f i c i e n t .  For  h i g h l y  f l u c t u a t i n g  flow, 
however, readings  may have t o  be taken every 
s e v e r a l  seconds.  

X x x  
X 

CLASSIFICATION OF ERRORS 

a n 

u 
3 

To h e l p  analyze a p a r t i c u l a r  meter ing system, 
the  sources  of e r r o r  l i s t e d  above can be put  
i n t o  t h r e e  classes. 

X x x  
X 

L i n e a r i t y  
Mount P o s i t i o n  X 

Measureable E r r o r s  

Measureable e r r o r s  are those t h a t  can be 
mathematically accounted f o r  i f  l a b o r a t o r y  
experiments were a b l e  t o  p r e d i c t  and q u a n t i f y  
the  e f f e c t  of the d i f f e r e n c e s .  For example, the  
e f f e c t s  of ambient temperature on a t r a n s m i t t e r  
are known from the manufacturer 's s pecif i- 
c a t i o n s .  I f  the  amount of ambient temperature 
change i s  known, o v e r a l l  meter accuracy can be 
c a l c u l a t e d  t o  take ambient temperature changes 
i n t o  account.  

E r r o r s  t h a t  are not  measureable are too  complex 
t o  quant i fy  o r  d i d  not  produce p r e d i c t a b l e  
r e s u l t s  i n  the  l a b o r a t o r y  and cannot be 
accounted f o r  i n  the accuracy equat ion .  The 
e f f e c t  of p u l s a t i n g  f low on accuracy,  f o r  
example, is  n o t  measureable because conclusive 
l a b o r a t o r y  experiments  have not  been done t o  
determine the  e f f e c t s  . 
Because the o v e r a l l  accuracy c a l c u l a t i o n  of the 
meter cannot take the  unmeasureable e r r o r s  i n t o  
account ,  they must be assumed t o  be 
non-existent.  I n  o r d e r  t o  make t h i s  assumption 
v a l i d ,  they must be minimized i n  the  f i e l d .  
Theref o r e ,  the  primary device  must be i n s t a l l e d  
proper ly ,  p u l s a t i o n  must be e l imina ted ,  
c a l i b r a t i o n  equipment must be of s u f f i c i e n t  
accuracy,  e tc .  (see Table 1). I f  these  
condi t ions  are not  met, then the  c a l c u l a t e d  
accuracy w i l l  n o t  represent  the  t r u e  accuracy of 
t h e  meter. 

Bias E r r o r s  

While many of the e r r o r s  found i n  meter ing are 
random, some can cause a predic tab ly  high o r  low 
reading  (see Table 1). As accuracy is 
considered t o  be a range of poss ib le  e r r o r  t h a t  
c e n t e r s  around a t r u e  va lue ,  b i a s  e r r o r s  are n o t  
included i n  the  accuracy c a l c u l a t i o n .  I n  o r d e r  
t o  make the c a l c u l a t e d  accuracy represent  t h e  
t r u e  accuracy of the  meter, f lowrate  
c a l c u l a t i o n s  must be cor rec ted  t o  take  the b i a s  
e r r o r s  i n t o  account o r  the  sources  of e r r o r  t h a t  
are biased must be minimized. 

Dvnamic E r r o r s  

Dynamic e r r o r s  are those which can change with 
time o r  opera t fng  condi t ions  (see Table 1). The 
percent  of span a t  which the DP t r a n s m i t t e r  is  
opera t ing ,  f o r  example, w i l l  change as f l o w r a t e  

changes. As t h e  percent  of span changes, the 
accuracy of the meter w i l l  change. 

When c a l c u l a t i n g  meter accuracy,  i t  must be 
r e a l i z e d  t h a t  the  accuracy value obtained is 
v a l i d  only f o r  the  p a r t i c u l a r  opera t ing  
condi t ions  used f o r  the  c a l c u l a t i  on. Dynami c 
sources  of e r r o r  must be checked p e r i o d i c a l l y ,  
and the o v e r a l l  accuracy re-calculated i f  a 
dynamic source of e r r o r  changes s i g n i f i c a n t l y .  

ERROR SOURCE MEAS B I A S  DYN 
I Prim. Dev. Type1 X I I 

I n s t a l l a t i o n  
~~ 

Tube Length 

Tube Condi t ion  
~~ ~~ 

Reyn. Number 
Phvs ica l  Cond. 

P u l s a t i o n  

Dimension Acc. 
Therm Expansion 

I Xmi t te r  Model I X I I 
I Ambient Temp. 1 X I I 

w l  I I 

I 1 1  I I I - " 1  Lead L ines  I 1 I 

I Assm. Constants1 X I X I X 
I I I - h/ Approx. o f  V a r .  

a Assm. Satura ted  

w Gas Exp. Factor  
3 
0 

+-p+ 
X X 

Z I  Steam Q u a l i t y  I x I x I x - t l  I I I 

Sampling F r e q .  I I 1 
Table 1 - E r r o r  Source C l a s s i f i c a t i o n  

OVERALL ACCURACY 

A f t e r  having i d e n t i f i e d  and c l a s s i f i e d  a l l  
poss ib le  sources  of e r r o r  i n  a flowmeter, 
o v e r a l l  accuracy can be c a l c u l a t e d .  Sources of 
e r r o r  t h a t  are b iased  o r  unmeasureable are not 
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included i n  the accuracy c a l c u l a t i o n .  

Each source of measuteable and unbiased e r r o r  is  
r e l a t e d  t o  a v a r i a b l e  i n  the  f low equat ion .  
Accuracy f o r  each v a r i a b l e  is  c a l c u l a t e d ,  
combined with a s e n s i t i v i t y  c o e f f i c i e n t ,  and 
combined t o  determine o v e r a l l  flowmeter accuracy.  

A s e n s i t i v i t y  c o e f f i c i e n t  takes  i n t o  account  
t h a t  no t  a l l  v a r i a b l e s  have an equal  e f f e c t  on  
the c a l c u l a t e d  flow rate .  For  example, i n  t h e  
f low equat ion  the DP (h,) is r a i s e d  t o  the 
power of .5 (square r o o t ) .  Therefore ,  
r e l a t i v e l y  l a r g e  changes i n  DP w i l l  n o t  g r e a t l y  
a f f e c t  t h e  c a l c u l a t e d  f low rate. 

cA!z STUDIES 

Rather than analyze the e f f e c t s  of each source 
of e r r o r  on o v e r a l l  accuracy,  examples of the  
most common causes  of poor accuracy are given i n  
t h i s  s e c t i o n .  The fol lowing examples are based 
on t y p i c a l  meters and f lowing condi t ions  found 
a t  The Geysers.  

A l l  graphs and conclusions i n  t h e s e  examples are 
der ived  from a computer accuracy model developed 
by the  au thor .  The model i s  based on 
manufacturer s p e c i f i c a t i o n s  and publ ished 
l a b o r a t o r y  d a t a .  

Low D i f f e r e n t i a l  Pressure  

The BLM r o u t i n e l y  c a l c u l a t e s  t h e  accuracy of 
over 90 steam flowmeters used f o r  f e d e r a l  
r o y a l t y  de te rmina t ion  a t  The Geysers.  I n  doing 
these  c a l c u l a t i o n s ,  .it has  been found t h a t  the  
primary c o n t r i b u t e r  t o  poor accuracy is DP 
t r a n s m i t t e r s  opera t ing  a t  a low percentage of 
t h e i r  c a l i b r a t e d  span. As previous ly  descr ibed ,  
the accuracy of a t r a n s m i t t e r  i s  dependent on 
the  percent  of f u l l  s c a l e  a t  which i t  is 
opera t ing  . 
It has  a l s o  been found t h a t  one of the main 
causes of low DP is  f l o w r a t e  d e c l i n e .  When a 
w e l l  is  f i r s t  put i n t o  product ion,  the p i p e l i n e ,  
primary d e v i  ce , t ransmi t ter ranges,  and 
c a l i b r a t e d  spans are designed f o r  the i n i t i a l  
f lowra te .  A s  the  f l o w r a t e  d e c l i n e s ,  assuming 
nothing e lse  changes,  the DP d e c l i n e s .  As t h e  
DP d e c l i n e s ,  the  o v e r a l l  accuracy of the  meter 
d e c l i  nes . 
Using the meter descr ibed i n  Table 2 ,  f l o w r a t e  
is varied while  every th ing  else i s  he ld  
cons tan t .  From Figure 1, the  accuracy goes from 
an i n i t i a l  va lue  of 21.5% a t  120,000 l b s / h r  t o  a 
f i n a l  value of 223% a t  20,000 l b s / h r .  I n  
a d d i t i o n  t o  being well o u t s i d e  the BLM accuracy 
l i m i t  of *%, the  accuracy of t h i s  meter a t  
20,000 l b s / h r  is  u n s u i t a b l e  f o r  any type of 
p r e c i s e  f i e l d  opera t ions  o r  r e s e r v o i r  
engineer ing  c a l c u l a t i o n s .  

The two most common methods of improving poor 
accuracy caused by a low DP transmitter reading  
are t o  i n s t a l l  a smaller o r i f i c e  p l a t e  t o  raise 
the  DP, o r  t o  reduce the span of t h e  t r a n s m i t t e r .  

METER PARAMETERS 

PRIMARY DEVICE 
Type: O r f .  Plate/Flange Taps 
Bore Diameter: 8.000 i n  
Pipe Diameter: 12.000 i n  
Meter Tube Length: 60.0 f t  
Upstream D i s t . :  2 e l b . / 2  p l n s  

LP  TRANSMITTER^ 
Model: Rosemount 1151GP 
Range: 0-1000 p s i g  
Span: 0-400 p s i g  

DP TRANSMITTER’ 
Model: Rosemount 1151DP 
Range: 0-750 i n  W . C .  
Span: 0-500 i n  W . C .  

OPERATING CONDITIONS 
Flowrate: 40,000 lbs/hr  
L ine Pressure: 125 p s i g  
Flowing Temp.: 352 deg F (sat . )  
Atmospher i c  Pressure: 13.1 p s i  
Ambient Temp. S h i f t :  50 deg F 

Table 2 

EFFECT OF FLOW DECLINE ON METER ACCURACY 

120 100 80 60 4 0  20 

Flowrate, 1000 Ibs/hr 

Figure 1 

1. Reducing O r i f i c e  P l a t e  Diameter. By 
i n s t a l l i n g  a smaller o r i f i c e  p l a t e ,  the DP 
is  increased f o r  a given f lowra te .  Because 
of the h igher  DP, the accuracy of the meter 
improves. 

Using the parameters from Table 2 ,  F ip- re  2 
was developed t o  i l l u s t r a t e  the e f f e c t  of 
o r i f i c e  p l a t e  s i z e  on accuracy.  I n i t i a l  
accuracy of 56% with  a n  8-inch o r i f i c e  
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EFFECT OF ORIFICE DIAMETER ON ACCURACY EFFECT OF DP SPAN ON METER ACCURACY 

2 .  
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O r l f l c e  Bore Dlameter, in. 

Figure  2 

corresponds t o  a Elowrate of 40,000 pounds 
per hour from Figure  1. Holding the  
Elowrate a t  a cons t an t  of 40,000 l b s / h r ,  the  
o r i f i c e  p l a t e  bore Ls reduced from an i n t i a l  
8 inches  t o  a f i n a l  4 inches .  An o r i f i c e  
bore sma l l e r  t han  4 inches  causes the DP t o  
exceed the  c a l i b r a t e d  span  o€ the DP 
t r a n s m i t t e r  (500 inches  w.c.). 

From FLgure 2 ,  two observa t ions  can be 
made. F i r s t ,  reducing  the  o r i f i c e  bore can 
cause a s i g n i f i c a n t  improvement i n  meter 
accuracy. Second, t he  accuracy reaches  a n  
optimum value  (2.9% a t  4.4 inches)  and then 
begins t o  g e t  worse with f u r t h e r  reduct ions  
i n  o r i f i c e  d iameter .  

There are l i m i t s  t o  t he  minlmum o r i f i c e  bore 
size t h a t  should be used. Beta r a t i o s  less 
than . 3 ,  which would correspond t o  a o r i f i c e  
d iameter  of 2.4 inches  i n  t h i s  example, are 
beyond the  range of Beta r a t i o s  f o r  whlch 
d a t a  i s  a v a i l a b l e .  Therefore,  f low 
c o e f f i c i e n t s ,  f a c t o r s  , and accuracy va lues  
given i n  l i t e r a t u r e  cannot be used t o  
c a l c u l a t e  an  accu ra t e  f lowra te .  

Reducing D i  f f e r e n t i a l  P res su re  Transmi t te r  
Span. Another method t o  inc rease  the  
accuracy of a meter ope ra t ing  a t  low DP is 
t o  reduce the  t r a n s m i t t e r  span. Most 
t r a n s m i t t e r s  a r e  capable of a t  least a 6 t o  
1 span turndown, €.e. t he  span of a DP 
t r a n s m i t t e r  wi th  a maximum range of 0-750 
inches  can be re -ca l ibra ted  anywhere between 
750 and 125 inches .  The DP t r a n s m i t t e r  
g iven  i n  Table 2 ,  f o r  example, has  been 
turned down from 0-750 inches  W.C. t o  0-500 
inches  w. c . 
The t o p  curve in Figure  3 shows the  e f f e c t s  
of reducing  DP t r a n s m i t t e r  span f o r  the  
meter descr ibed  i n  Table 2 .  To c a l c u l a t e  
t h i s  curve ,  f l owra te  was he ld  a t  a cons t an t  
40,000 l b s / h r  a s  with F igure  2 ,  and an  8 
inch o r i f i c e  p l a t e  w a s  used throughout. By 
reducing the  span of t he  convent iona l  
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0 3  t 

4 2  
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0 
I I I I I 

S O 0  4 0 0  300  2 0 0  t o o  0 

Cal ibra ted  DP Span, in. W . C .  

Figure  3 

t r a n s m i t t e r  from 500 inches  W.C. t o  125 
inches  w.c., t he  accuracy went from 26% t o  
+4.6%. - 
From t h i s  curve ,  i t  can be concluded t h a t  
reducing the  DP t r a n s m i t t e r  span is  less 
e f f e c t i v e  than reducing o r i f i c e  s i z e  t o  
improve meter accuracy. This i s  mainly due 
t o  the  increased  ambient-temperature e f f e c t s  
as t r a n s m i t t e r  span  i s  reduced. 

While i n s t a l l i n g  a smaller o r i f i c e  p l a t e  and 
reducing DP t r a n s m i t t e r  span are two common 
methods of improving accuracy , o the r  methods 
e x i s t  a s  w e l l .  These inc lude  i n s t a l l i n g  a DP 
t r a n s m i t t e r  with a lower range, i n s t a l l i n g  a 
"smart" DP t r a n s m i t t e r  (one t h a t  i s  s e l f -  
c o r r e c t i n g  f o r  ambient temperature and LP 
e f f e c t s ) ,  and i n s t a l l i n g  a smaller diameter 
meter tube. 

3 .  Low Range DP Transmi t te r .  By i n s t a l l i n g  a 
DP t r a n s m i t t e r  wi th  a lower maximum range, 
t he  small DP caused by low f lowra te  can be 
measured w i  thout  reducing  t r a n s m i t t e r  span. 
Ambient temperature e f f e c t s  are thereby 
reduced. For example, i f  the  meter 
descr ibed  i n  Table 2 was equipped wi th  a 
Rosemount range 4 t r a n s m i t t e r  (0-150 inches 
w.c.), and the  span was c a l i b r a t e d  a t  0 t o  
150 inches  w.c., the  accuracy of the  meter 
would be improved from 26.0% t o  22.0%. 

4. "Smart" DP Transmi t ter . Various 
manufacturers now make "smart" t r a n s m i t t e r s  
t h a t  a r e  s e l f  compensating f o r  ambient 
temperature and LP e f f e c t s .  Span, 
t he re fo re ,  can be turned  down without 
ampl i fy ing  the  e f f e c t s  of ambient 
temperature changes. The e f f e c t s  of 
reducing the  span on a "smart" t r a n s m i t t e r  
are shown by the  bottom curve i n  F igure  3. 
The p a r t i c u l a r  "smart" t r a n s m i t t e r  used2 
h a s  a maximum span of 400 inches  W.C. and a 
minimum span of 25 inches  W.C. (16:l 
turndown). From Figure  3 i t  can  be seen  
t h a t  reducing the  span  of a "smart" 
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5.  

t r a n s m i t t e r  does s i g n i f i c a n t l y  improve meter 
accuracy. 

Small Diameter Meter Tubes. Probably the 
l e a s t  prac t i c a l  method t o  improve accuracy , 
from an economic s t andpo in t ,  is t o  change 
the  meter tubes  t o  ones of smaller d iamter .  
This would enable  smaller o r i f i c e  p l a t e s  t o  
be used w i  thout  exceeding the  Be  ta-ra t l o s  
f o r  which d a t a  is a v a i l a b l e .  

Meter Tube Length 

The e f f e c t s  of meter tubes  t h a t  a r e  s h o r t e r  than  
recommended by the  American Petroleum I n s t i t u t e  
(API)l  have been deba tab le  f o r  many years .  
Recent da t a3  , however, sugges ts f lowra te can 
be ad jus t ed  t o  account f o r  s h o r t  meter tubes  
wi th  no s i g n i f i c a n t  r educ t ion  i n  primary device  
accuracy. The recommendation of API t o  add .5% 
t o  the  primary device  accuracy f o r  s h o r t  meter 
tubes  is probably s t i l l  v a l i d .  

I f  a meter wi th  meter tubes  meeting the  l eng th  
recommended by API has  an accuracy of f2%, the  
same meter wi th  s h o r t e r  meter tubes  would have 
a n  accuracy of 22.23% based on the  API 
recommendation. According t o  the work published 
by Miller, the  f lowra te  should be ad jus t ed  t o  
take  the  s h o r t  meter tubes  i n t o  account o r  a 
b i a s  e r r o r  would r e s u l t .  

Ambi e n t Tem pe r a  t u  r e Change 

The amount of ambient temperature change the  
t r a n s m i t t e r s  exper ience  can s i g n i f i c a n t l y  a f f e c t  
meter accuracy. For the  meter parameters l i s t e d  
i n  Table 2 ,  F igure  4 was developed t o  i l l u s t r a t e  
t he  e f f e c t s  of ambient temperature change. The 
c a l c u l a t i o n s  used t o  develop Figure  4 hold 
eve ry th ing  in Table 2 cons tan t  while vary ing  the 
amount of ambient temperature change. For an 
ambient temperature change of 50°F (225°F from 
the  ambient temperature du r ing  c a l i b r a t i o n )  , t he  
accuracy  is 5%. 

EFFECT OF AMBIENT TEMPERATURE ON ACCURACY 

1 2 2  

Amblent Temperelure Shlft, de@ F 

As previous ly  desc r ibed ,  the  amount of ambient 
temperature change the  t r a n s m i t t e r s  exper ience  
is a f f e c t e d  by th ree  parameters: c l ima te ,  
t r ansmi t  t e r l o c a t i o n ,  and c a l i b r a t i o n  
frequency. While noth ing  can be done about the  
l o c a l  climate , ambient-temperature change can  be 
reduced by r e l o c a t i n g  the  t r a n s m i t t e r s  o r  
c a l i b r a t i n g  the  t r a n s m i t t e r s  more of ten .  

1. Reloca t ing  the Transmi t te rs .  By l o c a t i n g  
the  t r a n s m i t t e r s  i n  a room of cons t an t  
temperature , the  ambient temperature change 
is e f f e c t i v e l y  reduced t o  zero.  This a lone  
would improve the  o v e r a l l  accuracy from 26% 
t o  f 3%. 

The room, however, must be l a r g e  enough t o  
hold  the  c a l i b r a t i o n  crew and equipment 
whi le  main ta in ing  a cons tan t  temperature.  A 
s m a l l  temperature-controlled box, f o r  
example, is not  adequate because the  
t r a n s m i t t e r s  a r e  exposed t o  ambient 
temperature du r ing  the  c a l i b r a t i o n .  

2. C a l i b r a t i n g  More Often. Another way t o  
reduce the  e f f e c t s  of ambient temperature 
change is t o  reduce the  time between 
t r a n s m i t t e r  c a l i b r a t i o n s .  The average 
d i f f e r e n c e  between the  maximum and minimum 
ambient temperature Increases  as the  t i m e  
between c a l i b r a t i o n  inc reases .  F igure  5 w a s  
developed from temperature d a t a  obta ined  
from th ree  s e p a r a t e  weather s t a t i o n s  loca t ed  
i n  The Geysers.  

By dec reas ing  the  time between c a l i b r a t i o n s  
from 50  days t o  10 days,  t he  average 
temperature s h i f t  is reduced from 5O0F t o  
30°F (see Figure  5) .  From Figure  4, t h i s  
r e s u l t s  i n ,  an improvement i n  accuracy from - +6% t o  5 . 5 % .  

CONCLUSIONS 

1. I n  o rde r  t o  c a l c u l a t e  a t r u e  accuracy va lue ,  
unmeasureable e r r o r s  must be minimized and 
b i a s  e r r o r s  must be cor rec ted  f o r  o r  
minimized. 

2 .  Poor accuracy caused by low f lowra te s  is 
b e s t  improved by inc reas ing  the  DP. 
Reducing the  span of the  DP t r a n s m i t t e r  is a 
less e f  f ec t ive  method . 

3. Ambient temperature e f f e c t s  can be reduced 
by l o c a t i n g  the  t r a n s m i t t e r s  i n  a room of 
cons t an t  temperature , by us ing  temperature- 
compensated ("smart") t r a n s m i t t e r s  , o r  by 
minimizing span turndown (lower range DP 
t r a n s m i t t e r )  . 

.4. Accuracy is no t  g r e a t l y  a f f e c t e d  by meter 
tube. l eng th .  For meter tubes s h o r t e r  than 
recommended by API, t he  f lowra te  should be 
co r rec t ed  based on the curves published by 
Miller. 

F igure  4 
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