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ABSTRACT 

Growth behavior of an  a r t i f i c i a l l y  created res- 
e r v o i r  system f o r  HDR geothermal hea t  ex t rac t ion  
i n  a formation with a n a t u r a l  f r a c t u r e  network, is 
analysed f o r  t h e  s t a g e  of the  c r e a t i o n  of t h e  res- 
e r v o i r  system by hydraul ic  f r a c t u r i n g  and a l s o  f o r  
t h e  s t a g e  of f l u i d  c i r c u l a t i o n  through t h e  reser- 
v o i r  system. It is revealed t h a t  the  reservoi r  
system grows up with a n  e l l i p t i c a l  shape and its 
growth rate rap id ly  decreases wi th  time a f t e r  t h e  
c i r c u l a t i o n  of f l u i d  through t h e  reservoi r  system 
starts. 
been found t o  be f a i r l y  small and t h e  most amount 
of t h e  i n j e c t e d  f l u i d  can be recovered: more than 
80% of t h e  i n j e c t e d  f l u i d ,  f o r  example, can be re- 
covered when t h e  permeability of t h e  n a t u r a l  frat- 
t u r e s  is less than 2 X 10-1°m2 . This implies  t h a t ,  
even i f  a n a t u r a l  f racture 'network e x i s t s  i n  a for -  
mation, i t  is poss ib le  t o  e x t r a c t  heat  from such a 
formation by using an  a r t i f i c i a l l y  created reser- 
v o i r  system. 

The f l u i d  l o s s  during t h e  c i r c u l a t i o n  has  

INTRODUCTION 

After  t h e  b a s i c  concept of t h e  heat  e x t r a c t i o n  
from BDR w a s  proposed (Smith e t  al . ,  1973), severa l  
HDR p r o j e c t s  were begun i n  US, UK, Japan, France 
and West Germany. I n  the  bas ic  concepts, a l a r g e  
a r t i f i c i a l  crack and/or l a r g e  a r t i f i c i a l  mul t ip le  
cracks are considered t o  be subsurface heat  ex- 
change surfaces ,  and such subsurface systems f o r  
t h e  geothermal hea t  ex t rac t ion  have a c t u a l l y  been 
constructed i n  some cases. 
is t h e  subsurface system of the  r-project ,  Tohoku 
Universi ty  (Takahashi and Ab6, 1988) However, as 
w e l l  known, i n  t h e  cases of the  Geothermal Pro jec t  
of t h e  Camborne School.of Mines, UK (Garnish, 1985) 
and of Phase I1 of t h e  HDR Pro jec t  of Los Alamos 
National Laboratory, US (Whetten e t  al . ,  1987), t h e  
subsurface systems cons is t  of l a r g e  number of natu- 
ral  f r a c t u r e s .  

The t y p i c a l  example 

I n  t h e  course of these  two Pro jec ts ,  numerical 
s imulat ions of t h e  subsurface reservo'ir systems 
have been performed (Murphy, 1982; Pine and Cundall, 
1985) by using t h e  computer program FRIP, which is 
based on t h e  D i s t i n c t  Element Method (Cundall, 1983) 
and was developed by Cundall (Murphy, 1982). How- 
ever,  t h e  s imulat ions are r e s t r i c t e d  t o  t h e i r  own 
f i e l d s  only and, as a r e s u l t s ,  t h e  r e s u l t s  of t h e  

s imulat ions are s p e c i f i c  t o  each f ie ld .concerned.  
So f a r ,  there  are very r e s t r i c t e d  knowledge on t h e  
behavior of t h e  a r t i f i c i a l  subsurface r e s e r v o i r  
systems created i n  s t rongly  f rac tured  rock masses. 

I n  t h e  present  paper, w e  dea l  with a formation 
with n a t u r a l  f r a c t u r e s  and analyze t h e  i n t e r a c t i o n  
between t h e  elastic deformation of t h e  formation 
and t h e  flow of f l u i d  i n j e c t e d  i n t o  t h e  formation, 
t o  grasp t h e  behavior of t h e  reservoi r  system 
crea ted  a r t i f i c i a l l y  i n  a s t rongly f rac tured  rock 
mass. The reservoi r  system c o n s i s t s  of a main 
flow path of f l u i d  and subsidiary flow paths  which 
surround t h e  main flow path.  The main flow path 
is along one of t h e  n a t u r a l  f r a c t u r e s  which i s  sub- 
j e c t e d  t o  a least compressive tec tonic  stress nor- 
m a l  t o  it and, among t h e  f r a c t u r e s ,  is most e a s i l y  
opened up by t h e  pressure of in jec ted  f l u i d .  The 
subsidiary flow paths  are along t h e  n a t u r a l  f rac-  
t u r e s  which are neighboring with o r  i n t e r s e c t i n g  
t h e  main flow path,  and these  n a t u r a l  f r a c t u r e s  
are presumably closed because of higher compres- 
s i v e  tec tonic  stresses a c t i n g  normal t o  them and/or 
t h e  drop of f l u i d  pressure due t o  flow res i s tance  
along them. The opened region of t h e  main flow 
path is modeled as a crack along an i n t e r f a c e  with 
i n f i n i t e s i m a l l y  small f r a c t u r e  toughness. 

It has been revealed t h a t  the  shape of t h e  res- 
e r v o i r  system is e l l i p t i c a l ,  where i ts  a s p e c t . r a t i o  
is almost conserved a f t e r  i t  becomes f a i r l y  la rge ,  
and i ts  growth rate decreases with t i m e  a f t e r  t h e  
c i r c u l a t i o n  of f l u i d  through the  reservoi r  system 
starts. The f l u i d  l o s s  has been found t o  be f a i r l y  
small during t h e  c i r c u l a t i o n  and most amount of 
in jec ted  f l u i d  can be recovered. 

I N J E C T I O N  OF F L U I D  I N T O  A FORMATION WITH A FRACTURE 
NETWORK 

Consider a formation with l a r g e  n a t u r a l  f rac-  
tu res .  The formation is contained between two 
i n t a c t  formations ( f i g .  1 ) .  Suppose a hydraul ic  
f r a c t u r i n g  is performed i n  t h e  n a t u r a l l y  f rac tured  
formation, then t h e  f r a c t u r i n g  f l u i d  flows along 
t h e  n a t u r a l  f r a c t u r e s  and a reservoi r  system con- 
s i s t i n g  of many f l u i d  flpw paths  along t h e  n a t u r a l  
f r a c t u r e s  is  created.  For such a reservoi r  system, 
i t  is highly probable tha t ,  among the  many frac-  
tu res ,  only a s p e c i f i c  f r a c t u r e  being subjected t o  
a least compressive tec tonic  stress w i l l  be opened 
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\ -  Intact 

Format i on 
Fractured formation between i n t a c t  
formations. 

F i g u r e  1 .  

up by t h e  f r a c t u r i n g  f lu id .  
remain being closed because of higher compressive 
stresses and pressure drop due t o  the  flow resist- 
ance along t h e  f l u i d  paths. Along the  closed frac-  
tures ,  t h e  f r a c t u r i n g  f l u i d  flows through aper tures  
which have been formed na tura l ly  by selfpropping 
caused by a s p e r i t i e s  on t h e  f r a c t u r e  surfaces .  
In t h i s  sect ion,  t h e  growth process of a reservoi r  
system of t h i s  kind during hydraul ic  f rac tur ings  
is analyzed. The opened region i n  t h e  reservoi r  
system is modeled a s  a crack on an i n t e r f a c e  with 
i n f i n i t e s i m a l l y  s m a l l  f r a c t u r e  toughness. 

The other  f r a c t u r e s  

Figure 2 is t h e  plane view of a reservoi r  system 
formed along n a t u r a l  f rac tures ,  where the f lu id-  
f i l l e d  region is hatched. The f r a c t u r e s  are 

j2 j 3  

LO 
t L  

JI 

Jo 
4 X 

assumed t o  be on a regular  rectangular  gr id  with 
spacing AL. A Cartesian coordinate system (x, y) 
centered a t  t h e  i n l e t  is introduced. The frac-  
t u r e s  parallel t o  the x and y axes a r e  denoted by 
J i  (i = 0,1,2, .=.) and j k  (k = 1,2,3,  . e * )  respec- 
t i v e l y ,  and t h e  length of the  f l u i d - f i l l e d  region 
on jk is denoted by Lk- 
stress S of t h e  tec tonic  stress is  presumed t o  be 
ac t ing  normal t o  the  f r a c t u r e s  Ji. 
JO is opened up along the  region 1x1 < L, where 
t h e  f l u i d  is f i l l i n g  the region Ix [ < LO. 
apertures  of the  opened f r a c t u r e  and t h e  closed 
f r a c t u r e s  are denoted by w and wT, where the aper- 
t u r e  of t h e  closed f r a c t u r e s  is assumed t o  be inde- 
pendent of f l u i d  pressure.  The rock is under t h e  
condi t ion of plane stress. 

The minimum compressive 

The f r a c t u r e  

The 

The volume flow rate q per u n i t  thickness  along 
J o  is given by 

X 
AL 

qin - I o g d x  f o r  0 x < - 2 

where m is the  maximum in teger  less than x/AL and 
t is  t i m e .  The half  of the  flow rate a t  the  i n l e t  
and the  r a t e  of flow i n t o  t h e  f r a c t u r e  j i  from t h e  
f r a c t u r e  J o  are denoted by q 

e ) ,  respect ively.  i n  and qi ( i  = 1,2,3,  

The condition of global cont inui ty  of f l u i d  flow 
i n  JO leads  t o  

where n is t h e  maximum in teger  less than Lo/AL+1/2. 
According t o  t h e  cubic law f o r  t h e  Newtonian flow 
i n  a narrow sl i t ,  the  f l u i d  pressure p i n  JO is 
given by 

X 

P = P i n  - I *q dx 
0 

where pin is t h e  pressure a t  t h e  i n l e t  and p is  
t h e  f l u i d  v iscos i ty .  Equation (3) leads  t o  

s ince  p (Lo, t )  = 0. Similar ly ,  t h e  f l u i d  pressure 
pm a t  t h e  point  of i n t e r s e c t i o n  between t h e  frac-  
t u r e s  Jo and jm can be obtained a s  follows: 

2m-1 

Pm Pin - I,' 3 . q  dx 

F i g u r e  2. Plane view of reservoi r  system growing 
along n a t u r a l  f rac tures .  

470 



Hayashi, et al. 

The flow pa t te rn  a t  an i n t e r s e c t i o n  point  be- 
tween. two f r a c t u r e s  (say J k  and jm)  can be classi- 
f i e d  i n t o  t h e  three  cases  shown i n  f i g .  3. I n  t h e  
case (a ) ,  t h e  condition of cont inui ty  of t h e  f l u i d  
flow and t h e  equation of motion along t h e  f r a c t u r e  
jm lead  t o  

Similar ly ,  f o r  t h e  case (b) 

For t h e  case (c) 

1 2 ~ 9 ,  Lm+2kAL 
(8) 

dLm 
qm = 3 w , 7  9 Pm =-- w r 3  3 

I n  der iving equations (6)-(8),  i t  is  assumed t h a t ,  
a f t e r  t h e  f l u i d  f i l l s  t h e  flow path e n t i r e l y  be- 
tween two neighboring g r i d  poin ts  on t h e  f r a c t u r e  
Jk (k = 1,2,3,  - a * ) ,  t h e  f l u i d  does not flow be- 
tween t h e  two.gr,id points .  W e  analyzed a l s o  t h e  
case t h a t  allows the  f l u i d  t o  flow between such two 
g r i d  points .  The numerical r e s u l t s  showed t h a t  the  
d i f fe rence  i n  t h e  main reservoi r  s i z e  L between t h e  
two cases j u s t  s ta ted  became l a r g e r  as w,. 
t h e  d i f fe rence  i s  less than lo%, which could be 
allowable f o r  t h e  est imat ion of the  reservoi r  s i z e .  

However, 

J I  J I  J I  

Jo JO JO 

case (a casetb) case (c 1 

Figure 3. Flow patern around t h e  poin t .of  
i n t e r s e c t i o n  between Jk and jm. 

Now, l e t  us analyze t h e  elastic response of t h e  
rock. A s t a t i c a l l y  equivalent pressure 5 is in t ro-  
duced f o r  p i n  .To, where 'p is the average value of 
p over t h e  region 1x1 Lo, i.e., 

5 = -+ t'i. dx (9) 

Then, w is approximated i n  t h e  following form f o r  
~ - L / L ~  << 1 : 

The opened region of t h e  f r a c t u r e  Jo must be closed 
smoothly a t  i ts  ends. This condition requi res  

p = s +  GwO 2 (1-v) L 

where G and v a r e  the shear  modulus and the  
Poisson's r a t i o ,  respect ively.  

A set of ordinary d i f f e r e n t i a l  equations 'in- 
volving f i r s t  der iva t ives  of L i  ( i  = 1,2,3,  * * * ) ,  
L and wo with respect  t o  t i m e  is obtained by sub- 
s t i t u t i n g  eqs. ( 1 ) ,  (3) ,  (4), (9) and (10) i n t o  
eq. ( l l ) ,  eqs. ( l ) ,  (6) and (10) i n t o  eq. (5) and 
eqs. (6) and (10) i n t o  eq. (2) .  It should be noted 
tha t ,  f o r  the  cases (b) and (c) ( f ig .  3) ,  eqs.  (7) 
and (8) must be used instead of eq. ( 6 ) ,  respec- 
t ive ly .  
grated numerically by t h e  Runge-Kutta-Gill method. 

The d i f f e r e n t i a l  equations have been in te -  

The tec tonic  stress S is assumed t o  be 

where a is  t h e  c o e f f i c i e n t  of the  a c t i v e  rock pres- 
sure,  pr the  dens i ty  of t h e  rock mass, g t h e  accel- 
e ra t ion  due t o  the  gravi ty ,  h t h e  depth of t h e  res- 
ervoir .  The following values  have been used: 

G = 1.56 x 1 0 k a  , 
v = 0.12 , 
1-( = 3.15 x 10-4Pa*sec , 
h = 400Om , 

A L = l O m ,  

a = 0.5 , 
pr = 2.5 X 103kg/m3, 

g = 9.8m/sec2 

The flow rate qin is chosen t o  be 1.0 X 10'3m3/sec 
em with reference t o  t h e  da ta  of the  massive hy- 
drau l ic  f rac tur ings  performed i n  the  course of  t h e  
Geothermal Pro jec t  of Camborne School of Mines, UK. 
The height of the  f rac tured  formation i s  set t o  be 
l O O m  and the  aper ture  wT is chosen t o  be 0 - 50pm. 
The flow res i s tance  i n  such an aperture  corresponds 
t o  t h a t  due t o  t h e  permeabili ty ranging from 0 t o  
2 X 10-"m2, which would be appropriate  f o r  t h e  
permeabili ty of n a t u r a l  f r a c t u r e s  (Kazemi, 1969; 
Preuss, 1983; Pulskamp, 1986). 

The s i z e  L of t h e  main reservoi r  is shown i n  
f i g .  4. 
flow i n t o  na tura l  f r a c t u r e s  from the  main r e s e r v o i r  
is negl igibly small i f  t h e  aper ture  wr of the  nat-  
u r a l  f r a c t u r e s  is  less than lOpm, which i s  equiva- 
l e n t  t o  the  permeabili ty of 8.3 X 10-12m2. A typ- 
ical example of t h e  shape of t h e  reservoi r  system 
is shown i n  f i g .  5. The reservoi r  system can be 
approximated by an e l l i p s e .  The aspect r a t i o  of 
the e l l i p s e  (Ll/L) is  p lo t ted  with respect  t o  t i m e  
i n  f ig .  6 ,  where L1 is  defined i n  f i g .  2. It can 
be seen t h a t  the  aspect  Tat io  increases  i n  t h e  
ear ly  s tage  of f l u i d  i n t e r j e c t i o n  and then l e v e l s  
o f f ,  i.e., the  reservoi r  system grows up without 
changing i t s  shape a f t e r  some amount of f l u i d  is 
injected.  

It can be seen t h a t  t h e  e f f e c t  of f l u i d  

471 



Hayashi, e t  a l .  

q = 

CIRCULATION OF FLUID 

Let  us provide two o u t l e t s  a t  x = k Lout t o  the  
reservoi r  system considered i n  t h e  previous sec- 
t i o n  ( f ig .  7) ,  i n j e c t  f l u i d  from t h e  i n l e t  and re- 
cover i t  from t h e  o u t l e t s .  The f l u i d  pressure and 
the  volume flow rate a t  each o u t l e t  are denoted by 
pout and qout, respect ively.  

X 
A I J  m 

i=l 
qin - 2 1 qi - l a ~ d x  aw f o r  - < x < Lout 2 =  

m 
qin - qout - 2 1 q i  Ji a t  dx 

i=1 

I I500 

E 

-1 

1000 

500 

n " 
0 500 1000 

t sec 
Figure 4. Variat ion of t h e  main reservoi r  

s i z e  with respec t  t o  time. 

t = I5 sec t=100 sec 
Figure 5. Typical examples of t h e  shape of 

t h e  r e s e r v o i r  system (wT = 5 0 ~ ) .  

0.5 

0 

Wr = 15pm 

WT = IOpm 
I I I - 

0 200 400 600 800 1000 
t sec 

Figure 6. Variat ion of t h e  reservoi r  aspect  
r a t i o  with respect  t o  time. 

t t t s t  t t 
Figure 7. Reservoir system with t h e  i n l e t  

and t h e  o u t l e t s ,  

The volume flow rate q p e r  u n i t  thickness  along 
Jo are given by 

f o r  Lout x < Lo 

where m i s  t h e  maximum in teger  less than x/AT,+l/2. 
The global  cont inui ty  of f l u i d  flow i n  Jo requi res  

n 
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From eq. ( 3 ) ,  t h e  f l u i d  pressure a t  t h e  o u t l e t s  is 
given .by 

Pout = Pin  - ,:ut - 3 q  dx 

Equations (3)-(11) s t i l l  hold. These equations and 
eqs. (13) and (14) can be reduced t o  a set of ordi-  
n a l l y  d i f f e r e n t i a l  equations involving the f i r s t  
der iva t ives  of Li (i = 1,2,3, - - - ) ,  L and wo wi th  
respect  t o  t i m e ,  following exac t ly  t h e  same proce- 
dure as t h a t  i n  t h e  previous sect ion.  Equation 
(15) serves  as t h e  equat ion which determines qOut 
f o r  given qin and pout. 

I n  t h e  numerical ca lcu la t ions ,  t h e  d is tance  be- 
tween t h e  o u t l e t s  and t h e  i n l e t  and pout are chosen 
t o  be 50m and 1.05S, respec t ive ly .  Regarding G, V, 
v, h, AL, a, pr, g and Pin, t h e  same values  as i n  
t h e  previous sec t ion  have been used. 

The rate of qout t o  qin is shown i n  f i g .  8, 
where tout is t h e  time when t h e  ex t rac t ion  of f l u i d  
starts through t h e  o u t l e t s  and is  set t o  b e  200sec. 
J u s t  a f t e r  t h e  c i r c u l a t i o n  starts, t h e  f l u i d  pres- 
sure  i n  t h e  reservoi r  system rap id ly  decreases be- 
cause pout i s  set t o  be lower than t h e  pressure 
a t  t h e  o u t l e t s  before  t h e  c i r c u l a t i o n  starts and, 
therefore ,  t h e  aper ture  of t h e  main flow path Jo 
decreases. This makes qout l a r g e r  than qin i n  t h e  
e a r l y  s t a g e  of t h e  c i rcu la t ion .  I t ’ s h o u l d  be noted 
t h a t  more than 80% of t h e  in jec ted  f l u i d  is recov- 
ered even when t h e  aper ture  of t h e  n a t u r a l  f r a c t u r e  
is  5Opm. The permeability of such f r a c t u r e s  i s  
estimated t o  be 2 x 10-’om2- i f  t h e  cubic l a w  of t h e  
f l u i d  flow through a narrow slit i s  adopted. 

1.5 
c .- 

(T 

‘r 
=I 0 

m 

I .o 

0.51 
I I I I I I I 

200 400 600 800 1000 
t sec 

Figure 8. Rate of qout t o  qin aga ins t  t i m e .  

Figure 9 shows the  s i z e  L of t h e  main reservoi r .  
As i n  t h e  previous sect ion,  t h e  e f f e c t  of f l u i d  
flow i n t o  t h e  n a t u r a l  f r a c t u r e s  from t h e  main res- 
e r v o i r  i s  negl ig ib ly  small i f  t h e  aper ture  wT of 
the  n a t u r a l  f r a c t u r e  is less than l o p .  It is a l s o  
seen t h a t  t h e  growth rate of t h e  reservoi r  de- 

creases d r a s t i c a l l y  with t i m e .  This is due t o  t h e  
f a c t  t h a t  t h e  most amount of f l u i d  i n j e c t e d  through 
t h e  i n l e t  is  recovered through t h e  o u t l e t s  as shown 
i n  f i g .  8. 

-I 

500 

0 500 1000 
t sec 

Figure 9 .  Variat ion of the  main r e s e r v o i r  s i z e  
with respec t  t o  t i m e  during f l u i d  
c i rcu la t ion .  

The shape of t h e  reservoi r  system is e l l i p t i c a l  
as i n  t h e  case of t h e  previous sect ion,  although 
t h e  f i g u r e s  l i k e  f i g .  5 are not  presented here  f o r  
brevi ty .  The v a r i a t i o n  of t h e  aspect r a t i o  of  t h e  
reservoi r  system with respect  t o  time is shown i n  
f i g .  10. The aspect  r a t i o  has  a tendency t o  l e v e l  
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off  with time, i .e . ,  the  reservoi r  system grows up 
without changing its shape a f t e r  i ts grows up t o  
some extent.  

CONCLUTION 

Growth behavior of an a r t i f i c i a l l y  created res- 
e r v o i r  system i n  a formation with a n a t u r a l  f rac-  
t u r e  network is analyzed f o r  HDR geothermal heat  
extract ion.  The general  conclusions t h a t  can be 
drawn from t h e  present  study are as follows: 
(1) The a r t i f i c i a l  reservoi r  system i n  a formation 
with a f r a c t u r e  network grows up with an e l l i p t i c a l  
shape. 
l e v e l  off  a f t e r  i t  grows up t o  some exten t ,  i.e., 
the  reservoi r  system does not change i ts  shape. 
(2) The growth rate of the  reservoi r  system rap id ly  
decreases with t i m e  a f t e r  t h e  c i r c u l a t i o n  of f l u i d  
starts. 
(3) The f l u i d  l o s s  during the  c i r c u l a t i o n  of f l u i d  
is f a i r l y  small and t h e  most amount of t h e  in jec ted  
f l u i d  is recovered: more than 80% of t h e  in jec ted  
f l u i d  i s  recovered when the  permeabili t  
n a t u r a l  f r a c t u r e s  is less than 2 x 10-”m2. 
(4) Thus, even when a na tura l  f r a c t u r e  network 
exists i n  a formation, it would be poss ib le  t o  ex- 
t r a c t  heat from such a formation by using an arti- 
f i c i a l l y  created reservoi r  system. 

The aspect  r a t i o  of t h e  e l l i p s e  tends t o  

of t h e  
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