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ABSTRACT 

A model for heat transfer in a Hot Dry Rock ( H D R )  
geothermal reservoir is developed which  predicts 
.produced f l u i d  thermal performance based on the 
tracer-determined residence time distribution and 
an estimated value of fracture porosity. The 
tracer response is  modeled as flow through sev- 
eral paths of highly fractured rock. Fracture 
porosity i s  used to convert f l u i d  volumes to rock 
volumes, which is necessary to model the heat 
sweep. The produced fluid response i s  the mixing  
cup average of the individual path temperatures. 
The model adequately represents the measured 
thermal response of an HDR reservoir operated a t  
the Fenton Hill NM HDR geothermal site i n  the 
la te  1970's. Application t o  the current Fenton 
Hill reservoir predicts a rapid ini t ia l  thermal 
drawdown of about 50°C, followed by a very slow 
thermal decline thereafter. The model is most 
sensitive to fracture porosity, and less so t o  
the flow p a t h  geometry used to match the tracer 
response. 

' INTRODUCTION ' 

One of the primary goals of HDR geothermal 
reservoir modeling i s  to estimate the energy ca- 
pacity of the underground fracture system. As 
the region of rock defined by the primary f l u i d  
flow paths  is cooled, a thermal f ron t  progresses 
from the injection to the production wellbore. 
The thermal f r o n t  i s  defined as  the region over 
which the f l u i d  temperature increases from i t s  
inlet  value to the outlet value. When the ther- 
mal f ron t  reaches the production well, the 
produced f l u i d  temperature begins to drop, and  
the temperature of the energy source declines. 

I n  the small prototype reservoirs tested t o  da te ,  
. less than one year has been required to observe 

production f l u i d  temperature changes, making  an 
energy extraction experiment a feasible technique 
fo r  determining reservoir size. However, for 
commercial-sized systems requiring a t  least  5 
years before thermal drawdown and 20 years before 
abandonment, reservoir modeling is  required t o  
predict the time of onset of thermal drawdown and 
subsequent rate of produced f l u i d  temperature . 
decline. 

Several heat transfer models have been proposed 

t o  predict produced fluid thermal drawdown i n  HDR 
reservoirs. Models have been based on a single, 
or perhaps a few, widely spaced parallel frac- 
tures having uniform fracture spacing, aperture 
size, and flow distribution (Carslaw and Jaeger, 
1973, Gringarten e t  al., 1975, Bodvarsson and 
Tsang, 1982, and Zyvolski, 1983). Another 
approach has considered the reservoir to be a 
packed bed of spheres (Kuo e t  al.,  1977, Hunsbedt 
e t  a l . ,  1978, and Iregui e t  al., 1978). The 
characteristic size of the rock through which 
fluid flows, and the nature of the flow passages, 
have a strong influence on the thermal and hydro- 
dynamic performance of the HDR reservoir. 

Typically, the length scale of the rock i n  the 
direction of f l u i d  flow is much larger than i t s  
length scale i n  the direction normal to fluid 
flow. Thus ,  temperature gradients i n  the rock in 
the direction of fluid flow are negligibly small 
compared with those normal to it. If the length 
scale of the rock normal to f l u i d  flow is small, 
there i s  negligible internal thermal resistance 
i n  the rock. Under this condition, a t  any loca- 
tion along the fluid-flow path, heat is 
transferred to the f l u i d  a t  a temperature equal 
to the rock in i t ia l  temperature u n t i l  a l l  of the 
accessible heat i n  the rock (referenced to the 
water inlet  temperature) i s  extracted. 
occurs, the rock local temperature rapidly fal ls  
t o  the f l u i d  in le t  temperature (denoting the 
location of the thermal front) and the process 
repeats i tself  a t  a small distance downstream 
from that location. 

When this 

Conversely, i.f the rock is thick i n  the direction 
normal to f l u i d  flow, large temperature .gradients 
i n  this direction cause a gradual decrease of 
rock temperature over time a t  any location along 
the flow path. Compared with the sharp thermal 
f ron t  that exists for the l i m i t i n g  case of t h i n  
rock, the thermal front for  this case is  smeared 
over space and time. 

Figure 1 shows the behavior of the fluid tempera- 
ture a t  fixed values of time as a function of 
position for the l i m i t i n g  cases of t h i n  and thick 
rock, and for intermediate cases. The sharp 
thermal front for the case of t h i n  rock i s  in 
stark contrast to the smeared thermal f ron t  for 
the thick rock. 
equal volumes; one consisting of a single layer 
of thick rock and the other of a number of layers 

Consider two reservoirs having 
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o f  t h i n  rock. The useful energy content o f  the 
rese rvo i r  composed of t h i n  rock i s  greater than 
t h a t  f o r  one. having the. t h i ck  rock since f o r  t h i n  
rock a l l  of the rock volume contr ibutes t o  heat 
t rans fe r  i n  the f u l l e s t  possible way. 

Of course, t o  p r e d i c t  thermal behavior, the 
models described above requi re s p e c i f i c  reservo i r  
parameters such as surface area, f rac tu re  spac-. 
ing, o r  rock volume. These parameters are 
usual ly  d i f f i c u l t  to determine. The cu r ren t  
study examines a new approach to heat t rans fe r  
modeling which incorporates t racer  and other i n -  
formation i n t o  a model t o  p r e d i c t  rese rvo i r  
thermal capacity. 

MODEL DEVELOPMENT 

The proposed model assumes mu l t i p le  f low paths, 
each of which behaves as a h igh ly  f ractured bed 
o f  rock. The flow paths have d i f f e r e n t  s izes and 
f low rates-adjusted t o  ma.tch the observed t racer  

, response. .The -assumption o f .  h igh l y  f ractured 
rock o r  small length scales i n  the d i r e c t i o n  
normal t o  f l u i d  f low impl ies very e f f i c i e n t  ex- 
t r a c t i o n  o f  energy from an ind i v idua l  path. 
However, by s p l i t t i n g  the f low i n t o  paths o f  
d i f f e r e n t  sizes and f low rates, the model cap- 
tures the nonuniformity o f  f low through f ractured 
rock.commonly observed i n  t racer  experiments i n  

’HDR systems. We c a l l  t h i s  heat t ransfer  process 
volumetr ic heat ex t rac t i on  w i t h  channeling. 
Figure 2 represents the ideal ized energy extrac- 
t i o n  model o f  several f lows paths o f  h igh l y  
f ractured rock connected i n  para1 l e l .  

To es tab l i sh  the l i m i t s  o f  a p p l i c a b i l i t y  o f  the 
volumetr ic energy ex t rac t i on  assumption, we 
must compare the time f o r  thermal d i f f u s i o n  with- 
i n  a rock block w i t h  t h a t  requi red t o  sweep heat 
from the flow path. Consider f low o f  a f l u i d  
through a h igh ly  f ractured bed o f  rock, each rock 
having a cha rac te r i s t i c  length scale o f  R which 
i s  h a l f  of the rock thickness. We w r i t e  an en- 
ergy balance a t  the i n te r face  between the rock 
and f l u i d  by equating the r a t e  o f  heat conducted 
from the rock to the r a t e  o f  heat convected i n  
the f l u i d  i n  the d i r e c t i o n  o f  f low 

Energy storage i n  the f l u i d  i s  neglected because 
the f l u i d  volume i s  much smaller than the rock 
volume. Nondimensional i z i n g  the length scales 
and rearranging, we ge t  

- aTr/a(r/R) I in ter face 

Recognizing t h a t  

(Pc), R i b 
k L  

- (2 )  
a If la (ylL’ r 

b = (Q/Aht) L, we Fbta in  

- aTr/a(r/R) I in te r face  (Idf 
P -  = Bi, ( 3 )  a l f  la ( Y I L  K 

where K i s  the i n t e r n a l  thermal conductance i n  
the rock, k A /R. Eqn. ( 3 )  i s  the r a t i o  o f  r h t  

the cha rac te r i s t i c  time f o r  heat t o  conduct (o r  
d i f f u s e )  through a rock thickness R, to the char- 
a c t e r i s t i c  time f o r  a mass o f  f l u i d  to convect 
heat  from rock area Aht. 

ma l  conductance o f  the rock i s  large compared 
w i t h  the f l u i d  capacity r a t e  (hClf, the r a t i o  
from Eqn. ( 3 )  i s  small and the rock temperature 
I s  s p a t i a l l y  uniform i n  the d i r e c t i o n  normal t o  
f l u i d  f low. for  a l l  values o f  tirne;.i.e.. 

I f  the i n t e r n a l  ther-  

aTr/a(r/R) I . i s  negl ig ib le .  
i n terface 

T rad i t i ona l l y ,  t h i s  r a t i o  i s  re fe r red  to as the 
Number o f  Transfer Uni ts  (or  NTU) i n  heat- 
exchanger theory. Since Eqn. ( 3 )  character izes 
the a b i l i t y  o f  the rock t o  t ransfer  heat as a 
lumped thermal mass, we may a l t e r n a t i v e l y  con 
s i d e r  i t  as a modified B i o t  number (Bim) where 
the usual convective conductance i n  the expres- 
s ion  f o r  B4ot number. has been replaced by the 
f l u i d  capaci ty rate. ‘ F o r  HDR reservoirs,  a value 
f o r  B i  o f  0.01 and smaller produces a thermal 

f r o n t  t h a t  spans less than 20 percent o f  the d i s -  
tance i n  the d i rec t i on  o f  f l u i d  flow. For Q/Aht 

of 5 X lo-’ m/s which i s  t yp i ca l  f o r  HDR reser-  
vo i rs ,  t h i s  condi t ion i s  . s a t i s f i e d  f o r  f r a c t u r e  
spacing o f  3 m o r  less. Thus, the s i ze  o f  the 
parameter B i  alone determines the behavior o f  

m 
t he  thermal f r o n t  w i t h  time and space as i n f l u -  
enced by heat t ransfer  from the rock. 

m 

Thermal Model: Within a s ing le plug f l ow  path, 
f o r  low B i  heat t ransfer,  the produced f l u i d  . m  
w i l l  be a t  the i n i t i a l  rock temperature u n t i l  a l l  
of the heat i s  swept from the path, a f t e r  which 
the f l u i d  o u t l e t  temperature equals the f l u i d  i n -  
l e t  temperature. The time required f o r  the 
thermal f r o n t  to .reach the o u t l e t  is. ca lcu lated 
by equating the t o t a l  e x t r a c t i b l e  energy i n  the 
rock to the cumulative energy extracted by the 
f l u i d  r a i s i n g  i t s  tempera.ture from T to To. For 
the rock: i 

Er = ( P C ) ~  Vr (To - Ti) 

and f l u i d :  

Ef = (fit), (To - Ti) t 

( 4 )  

( 5 )  

Combining Eqns. ( 5 )  and (61, the thermal break- 
through time t f o r  the thermal f r o n t  t o  reach 
the o u t l e t  i s  

( 6 )  

I n  r e a l i t y ,  the heat sweep process from a volume 
o f  rock w i l l  n o t  r e s u l t  i n  a pe r fec t  step 
funct ion f o r  the o u t l e t  temperature. Dispersion 
i n  the temperature f i e l d  w i l l  occur due to temp- 
e ra tu re  gradients i n  the rock (nonzero Bi,), 

nonuniform flow, and irregular-shaped and d i f f e r -  
e n t  s ized blocks. Levenspiel (1983) has 
attempted to quant i fy temperature-front ‘spreading 
i n  a regenerative heat exchanger using a heat 
t r a n s f e r  analog o f  the one-dimensional 
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convective-dispersion equation f o r  t racer  
transport: 

The di f ference i n  time and length scales i n  the 
HDR reservo i r  precludes the d i r e c t  use of 
Levenspiel's analysis. Nonetheless, i n  the cal-  
cu la t ions presented below, Eqn. ( 7 )  i s  solved by 
f i n i t e . d i f f e r e n c e s  t o  model the temperature f i e l d  
i n  each f low path. We choose values o f  Pe t h a t  

produce smooth thermal drawdown curves o f  pro- 
duced f l u i d .  Future work w i l l  attempt t o  provide 
j u s t i f i c a t i o n  for  t h i s  approach by developing a 
model f o r  determining the shape o f  the ind iv idual  
drawdown curves,based on block s ize and shape. 
However, we bel ieve t h a t .  the. fundamental physics 
o f  heat ext ract ion from a h igh ly  f ractured bed of 
rock i s  adequately represented by Eqn. ( 7 ) .  

The f i n a i  step i n  the t h e r e 1  model i s  to form a 
flow-rate-weighted average o f  the thermal: cor i t r i -  
but ions o f  the indivddual  f low paths, the mixing - 
cup o u t l e t  temperature. 

H 

N 

We must have some means f o r  s e t t i n g  values f o r  
the f l ow  ra,tes and rock volumes o f  i nd i v idua l  
f low paths. Next, we show how the rese rvo i r  
t racer  response and an estimate o f  mean f racture 
poros i ty  provide a way to s e t  these parameters. 

Model f o r  Tracer Response: Robinson and Tester 
(1984, 1986) have. examined methods f o r  using the 
response o f  an i n e r t  t racer  f o r  character iz ing 
nonuniform f low i n  continuous f low systems. I n  
the p a r a l l e l  p lug f l ow  reactor  (PPFR) model, f low 
r a t e s  and f l u i d .  volumes f o r  an a r b i t r a r y  number 
o f  paral le l ,  flow paths are chosen to be consis- 
t e n t  w i th  the observed t racer  residence time 
d i s t r i b u t i o n  (RTD). Mathematics can be developed 
f o r  an i n f i n i t e l y  l a rge  number o f  f low paths, and 
then generalized f o r  a f i n i t e  number. The f i r s t  
step i s  to normalize the t racer  response using: 

i n  which f ( t ) d t  i s  the f rac t i on  o f  f l u i d  leaving 
the system w i th  residence times between t and t + 
dt. For a large number o f  f low paths, the f low 
path o f  residence time t has a f l u i d  f low r a t e  o f  
Q f ( t ) d t .  The f l u i d  volume i s  then Q t f ( t ) d t .  

For modeling purposes, a f i n i t e  number o f  paths 
must be chosen. To s e t  f low rates and volumes, 
the t racer  response curve i s  s p l i t  i n t o  time 
i n t e r v a l s  0 to tl, t t o  t2, t2 to t , etc., and 

the f low r a t e  and f l u i d  volume are given by the 
fo l lowing expressions: 

1 3 

L 

Qi = Q f ( t ) d t  

ti -1 

(10) 

ti 
vi & 

= Q I t f ( t ) d t  (11) 
'i -1 

To s imp l i f y  the i n te rp re ta t i on ,  the t i m e  i n t e r -  
va ls  can be selected so t h a t  the f low ra tes  o r  
f l u i d  volumes are i d e n t i c a l  i n  each path. 

Est imat ion o f  Fracture Porosi ty:  The f i n a l  'step 
i n  the model i s  to convert  the f l u i d  volume o f  a 
f low path Vi t o  a rock volume by d i v id ing  by 
porosi ty.  I n -s i t u  methods, ra ther  than exper i -  
ments on cores, must be employed since n o t  a l l  
f r ac tu res  necessar i ly  f low f l u i d .  Various 
approaches f o r  bounding the l i k e l y  values f o r  
i n - s i t u  f racture po ros i t y  o f  HDR reservo i rs  are 
now described. 

During hydraul ic s t imu la t i on  tes ts  used t o  en- 
hance the permeabi l i ty  o f  an HDR reservoir ,  
microseismic events are located i n  space and time 
to determine where water i s  t ravel ing.  The vol- 
ume o f  rock defined by the microearthquake 
boundary defines the e f f e c t i v e  reservo i r  rock 
volume stimulated. The n e t  f l u i d  volume i n j e c t e d  
d i v ided  by the rock volume which has been stimu- 
l a t e d  i s  one estimate o f  f racture porosi ty.  This 
approximation i s  a p t  t o  underestimate po ros i t y  
because i t  i s  a reservoir-wide average ra the r  
than t h a t  near the wel lbores where more intense 
hydraul ic  st imulat ion,  and therefore rese rvo i r  
flow, takes place. 

Perhaps a more accurate technique f o r  est imat ing 
po ros i t y  i s  to use data f rom steady-state oper- 
a t i o n  to obta in  values f o r  V the f l u i d  volume 

of connected fracture-f low paths and Vr, the rock 
volume containing those f l o w  paths. Two method 
e x i s t  f o r  est imat ing Vf. An i n te rwe l l  t r ace r  ex- 
periment can be analyzed using the methods o f  . 
Robinson and Tester (1984) to obtain the i n t e g r p l  
mean volume, which i s  the vo id  volume o f  a l l  
f r ac tu res  t ransmi t t ing flow, regardless o f  perm- 
e a b i l i t y .  A second technique i s  to assume t h a t  

.the t o t a l  volume o f  . f lu id.  l e f t  downhole dur ing a 
closed-loop f low test ,  commonly denoted as .water 
loss, went simply i n t o  charging the rese rvo i r  
vo id  volume, and thus equals Vf. The l a t t e r  es- 

t imate f o r  V f  i s  l i k e l y  t o  be an upper bound 
since some f l u i d  i s  t r u l y  l o s t  t o  f a r - f i e l d  
permeation. 

f ' 

Various techniques can be employed t o  est imate 
the rock volume Vr. The simplest  i s  t o  assume 

t h a t  f o r  a h igh ly  f ractured medium the swept rock 
volume w i l l  be approximately a sphere o f  diameter 
equal t o  the separation distance o f  the i n j e c t i o n  
and product ion points.  
use rese rvo i r  compressi b i  1 i t y  arguments employing 
the fo l l ow ing  equation: 

Other est imat ion methods 

(12) 

When the reservo i r  i s  i n f l a ted ,  i t  has been 
ra i sed  from hydrostat ic  pressure to approximately 
i t s  instantaneous shut- in pressure. The change 
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i n  f l u i d  volume AV accompanying t h i s  pressure 
r i s e  i s  the cumulative water l e f t  i n  the forma- 
t ion ,  determined from the in tegra l  over time o f  
the d i f ference between i n j e c t i o n  and pro jec t ion  
f low rates; Then V i s  ca lcu lated using a value 

o f  13 appropriate f o r  a rock mass a t  zero ef fec-  
t i v e  stress. 

r 

Another method can be used a f t e r  the reservo i r  i s  
depressurized. By pumping the i n j e c t i o n  we1 1 and 
monitoring the shut i n  production well, the res- 
e r v o i r  pressure r i s e  per u n i t  increase i n  volume 
(AP/AV) i s  obtained.. T.hen V i s  obtained from 

Eqn. (12). I n  t h i s  case the va1.ue used f o r  res-  
e r v o i r  compress ib i l i ty  I3 must be lower, since the 
system i s  deflated t o  low pressure and t h u s ' i s  a t  
higher e f f e c t i v e  stress. 

r 

In'summary, several methods f o r  est imating V f  and 
vr have been developed,. When used consistently, . 

they w i l l  provide.8. range 'of  Ipossibie values f o r  
f rac tu re  porosity. 

MODELING THE FENTON HILL PHASE I RESERVOIR 

I n  the l a t e  1970's, a prototype HDR reservo i r  was 
created and tested extens ive ly  a t  the Fenton H i l l  
geothermal s i t e  (Dash e t  al., 1981). A val ida- 
t i o n  t e s t  o f  the volumetric heat ext ract ion model 
i s  i t s  a b i l i t y  t o  simulate the produced f l u i d  
temperature behavior o f  t h i s  reservo i r .  The 
thermal response o f  t h i s  system was complex due 
t o  the h i s t o r y  o f  operations performed. The 
f i r s t  energy ex t rac t ion  experiment lasted f o r  75 
days, r e s u l t i n g  i n  a severe temperature depres- 
s ion i n  the facture system. The i n j e c t i q n  w e l l  
was then repaired to el iminate f low behind the 
casing to achieve a greater separation distance 
between the i n l e t  and o u t l e t  posit ions. The new 
reservo i r  had a deeper i n j e c t i o n  reg ion b u t  the 
same production zones, which remained cooled 
because o f  , the e a r l i e r  test .  The new reservo i r  
was tested for  286 days (Zyvoloski e t  al., 1981). 

Based on the t racer  response, a two-path model 
.was selected w i t h  i n t e r n a l  path f luid'volume o f  

120 m3, external path f l u i d  volume o f  1191 m , 
w i t h  each path accepting 50% o f  the flow. 
Because o f  the series of operations out l ined 
above, the reservo i r  possessed a complex i n i t i a l  
temperature p r o f i l e .  Figure 3 shows the assumed 
i n i t i a l  temperature p r o f i l e  of the small f low 
path, whi le  the large path i s  assumed t o  be a t  
the i n i t i a l  geothermal gradient, unaffected by 
previous energy heat ex t rac t ion  tests. The tem- 
perature p r o f i l e  was constrained i n  two ways. 
F i r s t ,  i t  i s  q u a l i t a t i v e l y  consistent w i th  a 
temperature l o g  i n  the i n j e c t i o n  well ,  which pas- 
sed through the act ive reservo i r  region and was 
used t o  monitor the reservo i r  temperature f ie ld .  
Second, the p r o f i l e  was selected to be consis tent  
w i t h  the t o t a l  energy ext racted from the system 
i n  the previous operation. Having selected t h i s  
p r o f i l e ,  the only. adjustable parameter i s  frac- 
t u r e  poros i ty  4 . 

3 

Figure 4 compares the model r e s u l t s  and the pro- 
duced f l u i d  temperature measured downhole i n  a 
ser ies of temperature logs fo r  4 = 0.00029. The 
agreement i s  close because of the a d j u s t a b i l i t y  , 
i n  the i n i t i a l  temperature p r o f i l e .  Nonetheless, 
the model accurately represents the observed 
temperature response as wel l  a s ' t r a c e r  and', 
temperature l o g  . i n f o r y t i o n . .  Figure 5 i s  .a pre- 
d i c t i o n  of the. produced temperature behavior had 
the t e s t  continued f o r  1500. days. Apparently, the 
i n i t i a l  observed tkmperatu.re drop was due to ' , the 
i n i t i a l  temperature p r o f i l e  and n o t  to 
tempera ture-fron t breakthrough from cold water 
in jec t ion .  The t rue .  thermal f r o n t  breakthrough, 
i s  pre'dicted to occur a f t e r  about 700-1000 days. 

. 

APPLICATION TO THE CURRENT FENTON HILL RESERVO.IR 

I n  May.and June o f  1986, a 30-day. closed-loop 
f low t e s t  o f  the current  Fenton H i l l  HDR 
reservo i r  was car r ied  o u t , t o  measure f low para- 
meters needed t o ,  design a 'long-term t e s t  o f  one 
year o r  longer (Hendron, 1987). 
t e s t  was'not long enough. t o  achieve produced 
f l u i d  thermal drawdown t o  v e r i f y  the heat trans- 
f e r  model. Rather, i n  t h i s  sect ion we use data 
from t h i s  flow t e s t  to p r e d i c t  the l i k e l y  thermal 
behavior o f  the resqrvoir.  

This 30-day f low 

To j u s t i f y  the volumetric heat ex t rac t ion  model, 
we f i r s t  ca lcu late an average f rac tu re  spacing. 
For a .network o f  cubic rock. blocks separated by 
fractures, 4 '= 3b/s. Below we estimate f r a c t u r e  
poros i t ies  on the order o f  0.004. .The pressure 
drop across the reservo i r  places an upper bound 
on the aperture o f  about 1 mm. Th is . resu l ts  i n  
an average fracture'spacir ig s o f  0.75 m, which i s  
small enough to j u s t i f y  the volumetric energy 
e x t r a c t i o n  model . 
Figure 6 shows the normalized t racer  response 
f ( t )  using rad ioact ive isotope 82Br. Techniques . 
developed i n  Robinson and Tester (1986) have been 
used t o  extrapolate the t racer  response curve to 
long times.' The t racer  curve i s  consistent w i t h  
a combined model o f  channeling through smaller, 
short-residence-time paths and. a large volume o f  
rock containing low-permeabili t y  jo in ts .  Our 
base case f o r  heat t ransfer  modeling consists o f  
s i x  f low paths. The f i r s t  f i v e  d iv ide.  the mea- 
sured por t ion  o f  the curve i n t o  fi.ve paths o f  
equal f low r a t e  a n d . d i f f e r e n t  f l u i d  volume t o  
account ' fo r  30% o f  the flow, and the s i x t h  i s  an 
extremely large path accepting the remaining 70% 
o f  the flow. 

The poros i ty  estimates are summarized i n  Tables 1 
and 2. Table 1 l i s t s  the various niethods f o r  
est imat ing Vf  and Vr, whi le Table 2 shows the 
combinations o f  estimates used to calculate.4 . 
Disregarding the estimate based on microseismic 
analys is  which probably. underestimates 4 , the 
remaining values o f  poros i ty  range from about 
0.003 t o  0.008. This range i s  qu i te  narrow con- 
s ider ing  the diverse methods used to ca lcu la te4  . 
Figure 7 shows the r e s u l t s  from a simulati.on o f  
produced f l u i d  temperature versus time f o r  the 
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base case, assuming Q = 0.0159 m3/s and 4 = 
0.004. The f i r s t  observed breakthrough o f  the 
thermal f r o n t  occurs w i t h i n  the f i r s t  30 days, 
and the temperature decl ines gradual ly there- 
a f te r .  The cha rac te r i s t i c  slope i s  due to the 
combination o f  rap id  cooldown i n  channeling paths 
and slower drawdown i n  larger-volume paths. Also 
shown i s  an estimate based on a much simpler 
model assuming a s ing le f racture.  The s ing le 
adjustable parameter o f  surface area i s  deter- 

' mined from a corre la t ion o f  e f f e c t i v e  heat . 
t ransfer surface area versus cumulative produced 

' 

volume from the time o f  t race r  i n j e c t i o n  to the 
peak t racer  response. This model predic ts  a much 
slower thermal drawdown than the volumetric heat 
ex t rac t i on  model. V e r i f i c a t i o n  o f  the more ap- 
propr ia te estimate o f  rese rvo i r  capacity w i l l  
take place when long-term energy ex t rac t i on  i s  
ca r r i ed  out. 

PARAMETER SENSITIVITY 

The choice o f  parameter values and model geometr 
(number of paths, f low rates.and volumes o f  each1 
w i l l  a f f ec t  the resul ts .  Eqn. ( 6 )  shows a f i r s t  
order dependence on f low r a t e  and rock volume. 
Thus, the conversion from f l u i d  volume t o  rock 
volume using poros i ty  i s  the most s e n t i t i v e  p a r t  
o f  the model. An inco r rec t  estimate o f  0 has a 
f i r s t  order e f f e c t  on the estimated thermal 
breakthrough time. Figure 8 shows the predicted 
thermal behavior f o r  the complete range o f  por- 
o s i t y  values estimated e a r l i e r .  The less 
op t im is t i c  simulations f o r  the three l a rges t  
poros i ty  values probably span the range o f  uncer- 
t a i n t y  i n  thermal performance. 

The e f fec t  of model geometry on predicted thermal 
drawdown f o r  the same values o f  Q and 4 i s  shown 
i n  Figure 9. The simulat ions shown are: 1) the 
base case, 2 )  s i x  paths w i t h  the f i r s t  f i v e  o f  
constant volume and varying f low ra tes  and the 
s i x t h  obtained from the t a i l  o f  the t racer  curve, 
and 3 )  two paths, one represent ing the measured 
po r t i on  o f  the t racer response, and the other re-  
presenting the t a i l .  The two six-path models 
g ive v i r t u a l  1 y ind is t inguishable drawdown curves, 
whi le  the two-path model p red ic t s  a q u a l i t a t i v e l y  
s i m i l a r  resu l t .  The reason the model i s  so i n -  
sens i t ive to geometry i s  t h a t  the f low rates and 
volumes are constrained by the t racer response, 
which prescribes the l e v e l  o f  nonuniformity o f  
flow and degree o f  channeling. Thus, when chang- 
i n g  the number o f  paths, the f low ra tes  and 
volumes are changed so as t o  preserve the 
essent ia l  features o f  the f low f i e l d  and energy 
ex t rac t i on  process. Accurate est imat ion o f  
poros i ty  (and thus rock volume) and degree o f  
channeling are f a r  more important than the exact 
d e t a i l s  of flow geometry w i t h i n  the rock volume. 

LIMITATIONS OF THE MODEL 

The success o f  the proposed model hinges on the 
accuracy o f  the low B l o t  number approximation and 
estimated value for  porosi ty,  and a l s o  spa t ia l  
and temporal independence o f  poros i ty  and tem- 
pora l  independence o f  rese rvo i r  rock volume. For 
rock thicknesses o f  3 m and smaller and f o r  f l u i d  

Robinson and Jones 
f low ra tes  t yp i ca l  o f  those i n  HDR reservoirs,  
the approximation o f  low B i o t  number heat 
t rans fe r  i s  va l id .  For B i o t  numbers l a rge r  than 
0.01, i n t e r n a l  thermal resistance i n  the rock i s  
important and a more sophist icated model than the 
one described here i s  needed. To accurately 
represent the e n t i r e  possible range o f  B i o t  num- 
bers, a heat t rans fe r  model t h a t  includes two- 
dimensional conduction i n  the rock i s  needed to 
quant i fy  the ex ten t  o f  thermal- f ront  smearing. 
The existence of inter-mixing among the f l u i d  
f low paths 1 i kewi se produces smearing of the 
thermal f ront .  

Transient e f fec ts  such as reservo i r  growth due t o  
f rac tu re  extension and thermal s t ress cracking 
are a l so  n o t  accounted f o r  i n  the proposed model. . 
Time-dependent po ros i t y  and rese rvo i r  rock volume 
can be included by performing several t race r  
t e s t s  over time, and s h i f t i n g  the f low ra tes  and 
volumes o f  each path so as t o  be consistent w i t h  
the t racer  data. By using a su i tab le extrapola- 
t i o n  technique, a conservative estimate of 
rese rvo i r  thermal performance f o r  the l i f e t i m e  of 
the rese rvo i r  can be estimated which accounts f o r  
both ef fects .  

I m p l i c i t  i n  the proposed model i s  the assumption 
of s p a t i a l l y  independent porosi ty.  I n ' r e a l i t y ,  
d i f f e r e n t  f low paths are l i k e l y  to possess 
d i f f e r e n t  poros i t ies.  However, poros i ty  estima- 
t i o n  techniques are n o t  accurate enough t o  
provide values as a funct ion o f  residence time o r  
f low path. To minimize t h i s  l i m i t a t i o n ,  the con- 
servat ive approach i s  t o  assume the highest 
l i k e l y  value f o r  po ros i t y  f o r  the e n t i r e  
reservo i r .  

F ina l l y ,  we re-emphasize the importance of accu- 
r a t e l y  est imat ing porosi ty,  which has a f i r s t  
order e f f e c t  on thermal performance. Improve- 
ments t o  the techniques ou t l i ned  i n  the present 
study f o r  determining 0 w i l l  add t o  the usefu l -  
ness o f  the model. 

CONCLUSIONS 

1. 

2. 

3. 

A heat t ransfer model has been developed f o r  
HDR rese rvo i r s  which prescribes the degree 
o f  channeling based on the t racer  response. 
The model i s  v a l i d  f o r  f rac tu re  spacing o f  
about 5 m o r  less. 
The model accurate ly  simulates the produced 
f l u i d  temperature response o f  an HDR reser-  
v o i r  operated a t  the Fenton H i l l ,  NM 
geothermal s i t e  i n  the l a t e  1970's. The 
adjustable parameter used t o  achieve the f i t 
i s  the f rac tu re  porosi ty.  The i n i t i a l  tem- 
perature f i e l d  was known qua l i t a t i ve l y ,  b u t  
was a l so  adjustable w i t h i n  prescribed 
l i m i t s .  
Porosi ty estimates o f  the current  rese rvo i r  
a t  Fenton H i l l  range from 0.00048 t o  0.0084, 
w i t h  a more r e a l i s t i c  range o f  0.0029 t o  
0.0084. These values, when appl.ied t o  a 
t racer  response curve f o r  the reservoir ,  
p r e d i c t  an i n i t i a l  drop i n  produced f l u i d  
temperature w i t h i n  50-100 days, followed by 
a very gradual dec l ine thereafter.  
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The most sensi 
f racture poros 
f o r  est imating 

t i v e  parameter i n  the model i s  
, i t y  4. New f i e l d  techniques 

accurate p red ic t ions  of reservo i r  per fo r -  
mance. The model i s  very insens i t i ve  to 
f low path geometry parameters such as the 
number o f  paths, and the flow f rac t i ons  and 
f l u i d  volumes o f  each path. This i s  because 
the method f o r  s e t t i n g  the f low f rac t i ons  
and f l u i d  volumes automatical ly .prescribes 
the appropriate l e v e l  of flow channeling, 
which i s  one o f  the most inpor tan t  fac to rs  
governing the rese rvo i r  thermal performance. 
The proposed model i s  current ly being im-  
proved by: 1)  inc lud ing  r e d i s t r i b u t i o n  o f  
flow as evidenced by changes i n  t racer  r e s i -  
dence time d i s t r i b u t i o n ,  2) incorporat ing a 
more r e a l i s t i c  packed bed heat ex t rac t i on  . 
model v a l i d  f o r  a broad range o f  rock th ick-  
nesses, and 3) developing improved f i e l d  
techniques f o r  est imat ing f racture poros i ty  
from data obtained dur ing the upcoming long 
term f low t e s t  scheduled t o  l a s t  one year o r  
more. 

4 would r e s u l t  i n  more 

NOMENCLATURE 
2 i n t e r f a c i a l  heat t rans fer  area (m 

f racture aperture (m) 
modif ied B l o t  number = (hcIf/K 
heat capacity (J/kg-K) 
concentrat ion 
cumulative energy extracted by f l u i d  ( J )  
t o t a l  e x t r a c t i b l e  energy i n  the rock ( J )  

residence time d i s t r i b u t i o n  (s") 
rock thermal conduct iv i t y  (W/m-K). 
length o f  f low path (m) 
f l u i d  mass flow r a t e  (kg/s) 
mass o f  t racer  i n jec ted  (kg) 

heat t ransfer Pecle t number 
f l u i d  volumetric f low r a t e  (m /s) 
f l u i d  volumtr ic f low r a t e  i n  path i ( m  /SI 
distance i n  rock (m)  
f rac tu re  spacing (m) 
time (SI 
thermal breakthrough time (s) 
dimensionless time = t/t, 
tempera ture (K 
e x i t  f l u i d  temperature from path i (K) 
P1 u i d  temperature 

3 

i n j e c t i o n  f l u i d  temperature ( K )  

mixing cup o u t l e t  f l u i d  temperature ( K )  
undisturbed i n i t i a l  rock. temperature (K) 

rock temperature ( K )  

average f l u i d  v e l o c i t y  (m/s) 
f l u i d  volume (m ) 

f l u i d  volume o f  path i (m3) 

a x i a l  distance along flow path (m)  
dimensionless a x i a l  distance = y/L 
densi ty ( kg/m3) 

3 

Subscri p t s  

f f l u i d  
r rock 
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TABLE 1. 

Estimates o f  F l u i d  Volume and Rock Volume f o r  
Fenton H i  11 Reservoir. 

Robinson and Jones 
TABLE 2 

Poros i ty  Estimates fo r  the Fenton H i l l  Reservoir 

Method f o r  Method f o r  
Determining F l u i d  Determining Rock 
Volume Vol ume - 
Injec ted  Volume Microseismic 0 . 00048 
During Frac tur ing  Cloud Volume 

Water Inventory Steady State -0029 
Compressi b i  1 i ty .  

Tracer Pressure Bui 1 dup .004 

Tracer Spherical Model . 0084 

1.1 I I I 1 I 1 1 

Biot number F l u i d  Volume 
.9 - 

Volume 

7 -  

F Method (m3) Comments 

In jec ted  volume 21600 Consistent on ly  w i t h  b? 

dur ing hydraul ic microseismic rock. 
$ . 5 -  

f r a c t u r i n g  volume F 
.3 - 

Tracer-Determined 8440 In teg ra l  mean volume 
Fracture Volume o f  curve i n  Fig. 6 

Volume based on 12700 'Based on in tegra ted  
water inventory i n j e c t i o n  and produc- -.l I I 1 I I 

.1 - 

t i o n  ra tes  dur ing  -.l 1 .3 .5 7 9 1.1 

f low t e s t  Distance Along Flow Path 

Rock Volume 

Volume 

Method (m31 Comments 

Microseismic 4 . 5 ~ 1 0 ~  House e t  a1 . (1985) 
Vol ume 

Steady State 4 . 3 ~ 1 0 ~  Using A P  = 4200 p s i  
AV = 12700 m3 Compressi b i  1 i t y  

B = 7x10 p s i  

Pressure Buildup 2. 1x106 Experiment performed 
Method on 12/5/86 assuming 

B = 2x10 p s i  

Sphere o f  diameter 1 . 0 ~ 1 0 ~  diameter o f  125 m 
def ined by we l l -  
bore separation 

Method -7 -1 

-7 -1 

Figure 1. Fluid temperature profiles for different values of the Bibt.number 
. including limiting cases of thin ad.-th%k rock. 

Figure 2. Schematic of the parallel path heat extraction model. 
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Figure 3. Assumed initial temperature profile for rock in the small flow path 
for the Fenton Hill Phase I Simulation. 
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Figure 5. Projected production fluid temperature versus time for the Fenton 
Hiii Phase I Reservoir. 

sino* knur  
A-lOOOOO n? 

0 
I rn I 

200 a0 
nme Idavel 

Reservoir: A comparison of the volumetric heat extraction model 
and the single-fracture heat trander correlation. 
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figure 7. Predicted'production fluid temperature versus time for the IPhase II 
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,Figure 4. Comparison of results from model with measured production fluid 
temperature for the Fenton Hill Phase I simulation. 
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figure 6. Measured residence time distribution versus cumulative produced 
fluid'volume for the Fenton Hill Phase II reservoir. 
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Figure 8. Prediction of production fluid temperature for different values of 
fracture porosity for the Phase Il'reckoir. 

Figure 9. Comparison of predicted results for different assumed flow geometries. 
1) 6 paths, the first five at constant flow rate, the sixth representing 
the tail of the distribution, 2) 6 paths, the first five of cbnstant VOhme, 
the sixth representing the tail, and 3j 2 paths, the first representing the 
measured portion of the RTD and the second representing the tail. 
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