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ABSTRACT 

Testing has been i n  progress since January 1985 i n  
the second Hot Dry Rock reservo i r  located a t  
Fenton H i l l  , New Mexico. The r e s u l t s  of a 30-day 

. c i r c u l a t i o n  test ,  conducted i n  1986, are reported. 
The nominal reservo i r  depth i s  3,650 m (11,750 f t )  
and the mean i n  s i t u  temperature o f  the reservo i r  
i s  245°C. Du-e t e s t  37,000 m 3  (9.76 m i l l i o n  
ga l )  o f  co ld  water was in jec ted  i n t o  the reservo i r  
and ho t  water was recovered a t  temperatures 
ranging up t o  192°C. This corresponded t o  a 
maximum thermal power output o f  about 10 MW,. 

. 

. 
I. 

About 66% of the in jec ted  water was recovered 
during t h i s  t e s t  and a f u r t h e r  20% was recovered 
during a subsequent vent. The produced f l u i d ' s  
f low rate, temperature and power increased 
throughout the test. Assuming these trends 
continue, energy production ra tes  around 12 MW a t  

t 
the end o f  one year can be expected. The r e s u i t s  
o f  the t e s t  show t h a t  fu tu re  e f f o r t s  f o r  
performance improvement need t o  be focused on the 
production well .  

I .  INTRODUCTION 

A 30-day c i r c u l a t i o n  t e s t  was conducted i n  the 
Hot Dry Rock (HDR) Phase I 1  reservo i r  a t  Fenton 
H i l l ,  New Mexico i n  May-June, 1986, where co ld  
water was i n j e c t e d  and ho t  water was recovered 
under .high pressu.res, cooled and r e i n  'ected 

m i l l i o n  gal )  o f  water was in jec ted  i n t o  the 
i n j e c t i o n  wel l  (EE-3A) whi le  a t o t a l  o f  23,000 m3 
(6.15 m i l l i o n  ga l )  o f  ho t  water was produced from 
the production we l l  (EE-2). The surface i n j e c t i o n  
ra tes  ranged up t o  0.0265 m3/s (420 gpm) although 
most o f  the pumping was done a t  rates o f  0.0106 
m3/s (168 gpm) and 0,0185 m3/s (294 gpm) w i t h  the 
surface pressures around 26.9 MPa (3900 p s i )  and 
30.3 MPa (4400 p s i  ) respectively. The production 
surface pressure was cont ro l led  around 3 MPa (4500 
p s i ) ,  r e s u l t i n g  i n  surface production f low rates 
from 0.0063 m3/s (100 gpm) t o  0.0139 m3/s (220 

(Hendron, 1987). A t o t a l  o f  37,000 m Jj (9.76 

gpm) 

The production we l l  temperatures increased 
throughout the test ,  reaching a maximum o f  192'C 
near the end o f  the test. The production power 
showed a corresponding increase, reaching a 
maximum of 10 MWt a f t e r  28 days. The power 

increase resu l ted  from the r i s e  i n  production 
temperature combined w i th  a r i s e  i n  production 
rate.  

The bottom-hole i n j e c t i o n  well  pressure d i d  
n o t  change much w i th .  i n j e c t i o n  r a t e  or time, 
i n d i c a t i n g  f r a c t u r e  i n f l a t i o n  and s t imulat ion near 
the i n j e c t i o n  wellbore. The production r a t e  from 
EE-2 showed an overa l l  increasing trend. The 
o v e r a l l  reservo i r  impedance decreased throughout 
the test ,  r e s u l t i n g  l a r g e l y  from the s t imulat ion 
o f  the i n j e c t i o n  well .  The i n j e c t i o n  wel l  
impedance decreased from 0.72 GPa s/m3 (6.6 
psi/gpm) to .002 GPa s/m3 (0.02 psi/gpm) during 
the e a r l y  p a r t  o f  the t e s t  due to near-wellbore 
cool i n g  and pressurization. However , the decrease 
i n  the production we l l  impedance was only  a minor 
por t ion  o f  the overa l l  impedance, ind ica t ing  t h a t  
fu tu re  improvement s t ra teg ies should concentrate 
on the production well .  

The r a t e  o f  water loss  decreased throughout 
the test, s t a r t i n g  around 70% a f t e r  4 days o f  
pumping and reducing t o  26% a f t e r  30-days o f  
pumping. The apparently high water loss  values 
during the e a r l y  por t ion o f  the t e s t  were caused 
p r i m a r i l y  by reservo i r  i n f l a t i o n .  O f  the t o t a l  
i n j e c t e d  water, 66% was recovered dur ing t h i s  t e s t  
and a f u r t h e r  20% was recovered during a 
subsequent vent-down. 

I I. '.'PRESSURE-RATE RESPONSE 

The in jec t ion-we l l  pressures and f low ra tes  
are shown i n  Figure 1. Several experiments were 
car r ied  o u t  dur ing the tes t ,  inc lud ing many f low 
r a t e  and pressure changes and shut-ins i n  both 
EE-3A and EE-2, as wel l  as several vents from 
EE-2. The bottom-hole i n j e c t i o n  pressures were 
ca lcu lated from the surface data by correct ing f o r  
temperature dependent p ipe f r i c t i o n  and 
hydrostat ic  head. These pressures changed only  
s l i g h t l y  w i t h  f low.rate o r  w i th  time, ind ica t ing  
f low through i n f l a t e d  fractures. With the 
assumption o f  tu rbu len t  flow through p a r a l l e l  
fractures, pressures are proport ional t o  the 
square r o o t  o f  the flow rate,  as shown i n  Figure 
2. 
for  t h i s  experiment (2067) y i e l d  a bottom-hole 
f racture closure pressure o f  55.6 MPa (8070 p s i ) .  
As shown i n  Figure 2, t h i s  value i s  lower than 
t h a t  obtained from previous tests i n  the same 

Extrapolated back to zero flowrate, the curves 
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de t h  in terva l .  This suggests t h a t  s i g n i f i c a n t  
vofumes o f  water went i n t o  the connections created 
by previous tests. 
t e s t  are grouped i n  two sets: 
the s t a r t  o f  the test ,  and another cons is t i ng  o f  
data obtained d u r i n g ' l a t e r  steady flows. The 
slope f o r  t h i s  l a t e r  data s e t  i s  lower than the 
e a r l y  se t  i nd i ca t i ng  reduced flow resistance. 
The production pressure and f low r a t e  data are 
summarized i n  Figure 3.. The pressure was 
general ly maintained between 1.4 and 3.4 MPa (200 
and 500 p s i  t o  keep single-phase f l ow  i n  the 
wellbore. It took approximately 4.25 hours t o  
observe a s i g n i f i c a n t  pressure response i n  EE-2 
a f t e r  the s t a r t  o f  i n j e c t i o n  i n t o  EE-3A. The 
production f low r a t e  increased r e l a t i v e  t o  steady 
i n j e c t i o n  f low r a t e  due to reservo i r  i n f l a t i o n  and 
an ove ra l l  decreasing impedance. 

I n  Figure 2, data f o r  t h i s  
one group taken a t  

Af ter 30 days o f  pumping, both w e l l s  were shut 
i n  (Figure 4). Data f o r  each wel l  were analyzed 
us ing the Horner technique. While caut ion must be 
exe rc i  sed i n apply i ng conven ti ona 1 petroleum 
en g i neer i  ng techn i que s t o  f rac ture-domi na ted 
reservoirs,  a permeabil i ty-thickness product (kh) 
o f  3 x 10-14 t o  5 x 10-14 m 3  (100-150 md f t )  i s  
obtained f o r  the region near the EE-2 product ion 
wel l .  The sk in  fac to r  ''SI' a t  EE-2 has a maximum 
value o f  -2. The v a r i a b i l i t y  o f  r e s u l t s  near EE-2 
i s  because there was v i r t u a l l y  no wel lbore storage 
e f f e c t .  S imi lar  ca lcu lat ions f o r  the i n j e c t i o n  
reg ion y i e l d  a permeabil i ty-thickness product o f  2 
x 10-12 m 3  (7,800 md f t )  and a skin f a c t o r - o f  -15. 
The negative sk in  fac to rs  are consistent w i t h  the 
expected presence o f  f rac tu res  near the we1 1 bores, 
and the permeabili ty- th ickness products a r e  o f  the 
same order o f  magnitude as indicated by 

. near-wellbore impedance (see Section IV).  Also, 
the higher values o f  kh  and more negative values 
o f  lis" f o r  the i n j e c t i o n  we l l  as compared t o  the 
product ion wel l  are consis tent  w i th  the 
s t imulat ion a t  the i n j e c t i o n  well. 

The extrapolated equi  1 i brium rese rvo i r  
pressure from Horner p l o t s  was 6.48 MPa (9400 p s i )  
bottom-hole. Using an o v e r a l l  compress ib i l i ty  o f  
3 x 10'- MPa- (2 x l o o 7  ps i -  '1 and a in tegrated 
water-loss volume o f  13,678 m 3  (3.61 t i l \ i o n  gal) ,  
a t o t a l  reservo j r  'volume of 16.3 x 10 m (4,,300 
m i l l i o n  ga l )  can.be 'derjved. This leads t o  a 
fracture.volume poros i ty  o f  0.08%. This  i s  i n  the 
range o f  values reported by Robinson and Jones 
(1987). 

Fractur ing pressures versus depth f o r  t h i s  
t e s t  ( labeled "ICFT") a r e  presented i n  F igure 5 
along w i t h  data from previous flow tests.  
values fo l low the same general trend w i t h  depth, 
f a l l i n g  around a pressure gradient of about 19 
MPa/km (0.8 p s i / f t )  (Kelkar e t  al., 1986). Also, 
the f rac tu re  closure s t ress obtained from the 
shut- in data i s  lower than t h a t  extrapolated from 
the I S I P  method (Hickman and Zoback, 19811, again 
remaining consistent w i t h  previous resu l t s .  

The new 
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111. THERMAL BEHAVIOR AND POWER PRODUCTION 

Surface production temperature was mOni tored 
throughout the test. Several temperature surveys 
were a l s o  run i n  each wellbore. 
both E€-3A and EE-2 performance were made us ing a 
wel lbore heat transfer (WBHT) code (Dash and 
Zyvoloski, 1982) t h a t  solves the basic 2-D r a d i a l  
equations for  heat t ransfer,  and accounts f o r  
forced convection i n  the wellbore and annulus, and 
f o r  conduction to the surrounding rock mass. The 
r e s u l t s  were i n  good agreement wi th  f i e l d  
measurements as shown i n  Figure 6. 

Simulations o f  

Analysis o f  the EE-3A wel lbore surveys (Figure 
7) shows t h a t  f l u i d  ex i ted  the wel lbore between 
3530 - 3660 m (11,580-12,000 f t ) .  Possible . 
d i sc re te  f ractures noted a t  3530 m (11,580 f t ) ,  
3580 m (11,750 f t )  and 3640 m (11,950 f t ) ,  a r e  
equiva lent  to f ractures f i r s t  st imulated i n  
previous tests. 

EE-2 production temperature was modeled using 
a rese rvo i r  o u t l e t  temperature o f  232°C ( t h i s  
corresponds to the o r i g i n a l  rock temperature a t  
3535 m (11,600 f t ) )  and i s  i n  good agreement w i t h  
Kuster temperature surveys run dur ing the t e s t  
(Figure 8). 
i d e n t i f y  f rac tu re  i n l e t s  since EE-2 could n o t  be 
logged below 3200 m (10,500 f t ) .  

It was impossible t o  p rec i se l y  

The post-experiment Kuster survey (Figure .8)  
shows a f l a t ,  ho t  p r o f i l e  up t o  2990 m (9,800 f t )  
i n d i c a t i n g  a small amount o f  f l u i d ,  about 
0.0019 m3/s (30 gpm), was s t i l l  enter ing the 
wel lbore below t h a t  depth a f t e r  shut-in, f lowing 
up the wellbore and o u t  i n t o  the rock a t  2990 m. 
The f l a t  po r t i on  o f  the curve from 610 t o  800 m 
(2,000-2,625 f t )  corresponds t o  an aqu i fe r  near 
the t r a n s i t i o n  o f  the sediments and Pre-Cambrian ' 

basement rock. 

Thermal power production was estimated using 
the measured production temperature a t  EE-2 
wellhead, i n j e c t i o n  temperature a t  EE-3A and the 
measured flow r a t e  through the heat exchangers. A 
peak power o f  about10 MW was estimated. The 

t 
power production o f  9.2 MWt a t  the end o f  the t e s t  

was consis tent  w i th  model pro ject ions for  a 
sustdined f low r a t e  o f  0.0126 m3/s (200 gpm) and a 
192°C production temperature. Pro ject ion o f  
performance trends dur ing the test ,  assuming no 
thermal drawdown i n  the reservoir ,  i nd i ca te  t h a t  
from 10-12 MWt could be produced a f t e r  one year i f  

the f low r a t e  i s  maintained between .Ol26 m 3/s - 
-0158 m3/s and production temperature i s  
200-210°C. 

I V .  IMPEDANCE AND WATER LOSS 

Impedance i s  determined by d i v i d i n g  the 
pressure drop across a f low segment by the 
product ion f low rate. Figure 9 shows the t o t a l  
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reservo i r .  Both the Phase I US reservo i r  and the 
B r i t i s h  reservo i r  have shown considerable 
i m p r o v e ~ n  t over time beyond the 30-day comparison 
here. Thus, based on the l im i ted  experience t o  
date, i t  i s  l i k e l y  t h a t  the performance o f  the 
Phase I1  US reservo i r  w i l l  improve dur ing 
subsequent long t e r m  tests. 

CONCLUSIONS 

reservo i r  impedance, corrected for buoyancy and 
f r i c t i o n  e f f e c t s  i n  the wellbores, decreased from 
7 GPa*s/m3 (64 psi/gpm) t o  2 GPa*s/m3 (18 psi/gpm) 
over the 30-day test .  The most rap id  decl ine ' 

occurred dur ing the f i r s t  week o f  i n j e c t i o n  due t o  
hydraul ic and ~ e r ~ l  s t i ~ l a t i o n  near the 
i n j e c t i o n  wellbore. 

Near-wellbore impedance i s  found by 
subtract ing the f low ing  surface pressure from the 
instantaneous shut- in pressure, cor rec t ing  t h i s  

d i v i d i n g  by the surface flow r a t e  immediately 
p r i o r  to the shut-in. The i n j e c t i o n  we l l  
impedance dropped r a p i d l y  dur ing the f i r s t  h a l f  o f  
the t e s t  from 0.7 GPa.s/m3 (6.6 psi/gpm) to 2 x 
10-3 GPaeslm3 (0.02 p s i / g p ~ ) .  

'amount f o r  buoyancy and f r i c t i o n ,  and then 

Water l oss  rate,  defined as the r a t i o  o f  the 
.d.ifference between the i n jec ted  and recovered 
water to the amount i n jec ted  a t  a given time, i s  
shown i n  Figure 10. There were four.mechanisms o f  
water loss operating dur ing the f low test :  1) ' 

reservo i r  extension ind ica ted  by micoseismic 
a c t i v i t y ;  2) i n f l a t i o n  of the reservoir :  3) f l ow  

A 30-day c i r c u l a t i o n  t e s t  was ca r r i ed  o u t  
dur ing which the production flow rate,  temperature 
and thermal energy ex t rac t i on  showed increasing 
trends. Based on t h e r ~ ~  modeling, an energy 
product ion r a t e  around 12 MW could be expected a t  

the end o f  one'year. The reservoir  f low 
res is tance decl ined from 7 GPa.s/3 t o  2 GPaos/m3 
and the f rac t ion  o f  water recovered dur ing the 
t e s t  increased from 30% t o  74%. Comparison w i t h  
other HDR reservoirs leads to the p o s s i b i l i t y  o f  
f u r t h e r  i ~ p r o ~ e ~ n t  of p e r f o r ~ n c e  parameters over 
longer periods. The hydrau1.i.c behavior o f  the 
rese rvo i r  shows tha t  f u tu re  improvement s t ra teg ies  
should be focused on the production well .  

t 

ACKNOWLEDGMENTS i n t o  a n o l d e r  reservo i r  system; and 4) d i f f u s i o n  
i n t o  secondary poros i ty  (i.e. i n t o  the country 
rock surrounding the f rac tu re )  . The la rges t  ha ter  
l oss  rate, about 70%, occurred near the beginning 
o f  the t e s t  as the formation in f la ted.  As the 
reservoir.  approached equi l ibr ium, water. loss 
averaged 30% o f  the i n jec ted  volume, w i t h  a low of 
26%. 

Adjacent to the rese rvo i r  cur ren t ly  under 
testing, there i s  an older, shallower reservoir ,  
termed Phase I, a t  depths around 2600-2700 m 
(8,500-8,900 f t )  (Dash e t  a1 ., 1983). The we l ls  

. i n  t h i s  o lder  reservo i r  were used as pressure taps 
dur ing t h i s  test. A f t e r  28 days o f  pumping i n t o  
€€-3A,  the o lder  we l ls  experienced a pressure r i s e  
from atmospheric t o  0.83 MPa (120 ps i ) .  This 
pressure r i s e  was modeled by representing the as a 
sphere o f  constant pressure, embedded i n  an 
i n f i n i t e  homogeneous medium surrounding it, 
r e s u l t i n g  i n  a regional  permeabi l i ty  o f  18 x 10-'8 
m2 (18 microdarcies). This com ares-wel l  w i t h  
previous est imat ions o f  5 x.lO-P8 + t o  10 x 10-18 
m2 ( 5  t o  10 microdarcies). 

V. CO~PARISON WITH OTHER HDR RESERVOIRS 

There are two other HDR reservoirs t h a t  have 
been subjected t o  c i r c u l a t i o n  test ing where 
s i g n i f i c a n t  quanti  t i e s  o f  thermal energy were 
extracted by c i r c u l a t i o n  o f  water. One o f  these 
was the Phase I reservo i r  a t  Fenton H i l l ,  USA 
(Dash e t  al., 1983). The other i s  the B r i t i s h  
reservo i r  cur ren t ly  being tested a t  Rosemanowes 
Quarry i n  Cornwall, Great B r i t a i n  (Bachelor, 
1984). A comparison o f  these two reservo i rs  w i t h  
the Phase I 1  reservo i r  i s  given i n  Table I. The 

Th is  work i s  k i n g  supported by the US 
Department o f  Energy. Authors would 1.ike t o  
acknowledge several f r u i t f u l  discussions w i t h  
Robert Potter, Hugh Murphy and Gerald Jones o f  Los 
Alamos National Laboratory. Thanks are due t o  Ms. 
B o n i p  Busse f o r  t p i n  the t e x t  and t o  John 

' 

Paskiewicz and Rut{ Ro8ichaud f o r  preparation o f  
f igures.  
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TABLE I 

COMPARISON OF THREE HDR RESERVOIRS 
AFTER ONE MONTH OF OPERATION 

FENTON HILL 
._ E N L A R ~ N T  
' PHASE I PHASE I1 ROSEMANOWES 

, RESERVOIR RESERVOIR CORNWALL, UK 
. .  

Depth of Reservoir, m ' 2,800 3.550 . 2.400 
Temperature of Reservoir, 'C 195 240 85 
Modal Volume, m 3  160 350 270 
Surface Temperature, 'C 135 191 76 
Thermal Power. MWt 3 9 1 
Production Flow Rate, m31s 0.007 0.013 0.004 

Corrected Impedance GPa s l m  1.7 2.2 1.0 
Water Loss Rate a t  30 Days, m' ls  O.OOll(1691 0.006(339) 0.0004(10%) 

Injection We1 1 Pressure; MPg 10 30 4 
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figure 1. Surface pressure and flow rate at injection well. 
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kgure 2. Bottom hole fracture closure pressure for this experiment (2067) 
along with previous data. 
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Figure 3. Surface pressure and flow rate at production well. 
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Figure 4. Pressure response during final shut-in at injection and production 
wells. 
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Figure 5. Fracture extension pressure for this experiment (2067) along with 
previous data. 
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Figure 6. Surface temperature for production well along with model 
predictions. 

Figure 7. Injecion well temperature surveys taken before (86/05/15), during 

(86/05/28,86/06/16) and after (86/06/23) flow test. 
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Figure 8. Production well temperature surveys taken during (86/05/28, 

86/06/04., 86/06/15) and after (86/06/25) flow test. 
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Figure 9. Overall reservoir imlpedance. 
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Figure 10. Percent water loss. 
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