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Abstract 

Triaxial compression tests were run at room 
temperature to determine failure characteristics 
of rocks extracted from the geopressured-geo- 
thermal reservoix underlying Brazoria county. Ef- 
fects of both confining & pore fluid pressure were 
considered. Like all other rocks, ultimate 
strength was found to increase with increase in 
effective confining pressure. 
havior was observed at pressures above 5000 psi. 
In general rocks from this reservoir were found 
to be considerably weaker than corresponding well 
compacted sandstones. 

Partial ductile be- 

Introduction 

Geopressured reservoirs are deep sedimentary 
basins filled with sand, clay or shale and are 
generally undsx-compacted below the depths o f  
7000 to 25ooov.1 As a result, part of the over- 
burden pressure is carried by the interstitial 
pore fluid. For controlled exploitation of such 
reservoirs, it is necessary to determine the re- 
servoir behavior under various stress conditions. 
One of the studies which is of importance to 
both geologists and drilling engineers is the 
knowledge of the in-situ failure characteristics 
of such rock formations. 

The studies reported herein were conducted 
on samples extracted (from depths 11000-16000’) 
from two test wells drilled in Brazoria county, 
Texas. Geological studies of samples extracted 
from this reservoir reveal that major types of 
porosity encountered are microporosity and 

strengths; pore pressure in these studies was 
maintained constant. 
however, recognized that since the state of stress 
in a rock is determined by effective stress, 
therefore, a better understanding of the mecha- 
nism of rock failure could be obtained by study- 
ing the effects of both confining and pore fluid 
pressure on rock strength. 
showed that the effective stress theory was 
applicable and that the magnitudes of confining 
pressure and pore fluid pressure had no effect on 
rock strength as long as they were equal but mode 
of failure changed from brittle to ductile when 
the effective confining pressure increased. 

Several investigators ‘ ’, 

Such studies ” ’ ’ 

In order to have a better understanding of 
the mechanism of failure in rock samples from 
the geopressured reservoir (depths 11000-16000’ 1, 
tests were conducted to study the effects of 
both confining and pore pressure on rock strength 
at room temperature while maintaining a constant 
strain rate. The results from these tests are 
discussed in detail in the following sections. 

Theoretical Considerations 

The conclusions from the data of these tests 
are based on the assumption of Coulomb-Mohr 
friction hypothesis and the concept of effective 
stress. According to Coulomb-Mohr criterion, 
failure occurs when shearing stress exceeds the 
sum of cohesive strength,To, and frictional re- 
sistance to slip along the failure plane and is 
given by 

(1) T = TO + un tan $ 

where $ is the angle of friction and is related 
to coefficient of internal friction 1-1 by 

secondary dissolution porosity, the later being 
dnminant. The behavior of these rocks under 
triaxial conditions of stress is, therefore, ex- 
pected to be somewhat different from those of y = tan $ (2) 

Effective normal and shear stresses Un and T are 
given by 

well compacted rocks, like Berea sandstone, lime- 
stones, and dolomites, test results for which 
have been reported in the literature. 3 y  ‘ Ex- 
periments ’ ‘- also show that limes tones and dolo- 
mites, which are also characterized by secondary 
porosity, show transition from brittle to ductile 
behavior at much lower effective confining pres- 
sures than those for sandstones which are formed 
by grain to grain contact. 

(3)  

where 8 = angle between the failure plane 
and the major principal axis. Most studies in the past3 were conducted to 

study the effects of confining pressure on rock 
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The d a t a  from a series of t r i a x i a l  tests 
were used t o  p l o t  Mohr c i r c l e s  f o r  each p a i r  of 
e f f e c t i v e  s t r e s s e s  Qi and 0 3  on the  sample (Fig. 
3). The Mohr's envelope, which is  a curve tan- 
gent t o  a l l  these  circles, is  t h e  locus of a l l  
poin ts  s a t i s f y i n g  Eqn. (1). Frac ture  angle  0, 
angle of f r i c t i o n  @, and shear s t r e s s  T can be 
obtained from Mohr envelope as shown i n  Fig.  (3). 
From t h i s  f i g u r e  i t  is evident t h a t  

(4) 4 e = 45O + 

Experimental Arrangement 61 T e s t  Procedure 

The experimental set up t o  study t h e  
s t r eng th  c h a r a c t e r i s t i c s  of t he  rocks is shown 
i n  Fig. (1). The compression c e l l ,  designed f o r  
working pressures  up t o  15000 p s i  with a n  in- 
dependent con t ro l  f o r  a x i a l  load, confining pres- 
s u r e  and pore p re s su re  i s  similar t o  t h e  one used 
by Robinson. 

FIGURE 1 EXPERIMENTAL SET-UP 

STRAIN ( X I  

FIGURE 2 STRESS-STRAIN DIAGRAM 

Depth 
14761 f t *  - Compression 

I s  

35 30 25 20 15 10 5 0' -5  
NORMAL STRESS ( k p s i )  

FIGURE 3 MOHR DIAGRAM 

pressure  while  maintaining confining pressure  
constant.  

All tests were run on a 1" diameter x 2" 
long samples cu t  from cores ex t rac ted  from 1 2  
d i f f e r e n t  depths ( a s  indicated i n  Table I) re- A summary of t r i a x i a l  tests, which inc ludes  
present ing  a wide cross-section o f - t h e  producing. t h e  depths,  porosity,  and absolu te  n i t rogen  per- 
zones of t h e  two w e l l s .  Four t o  s i x  samples were meabi l i ty  of undeformed samples i s  given i n  
c u t  from each core  f o r  each test. Tables I. 

Experimental Results 

Each sample, s a tu ra t ed  with a 6% salt  
so lu t ion ,  was i n i t i a l l y  loaded hydros t a t i ca l ly  t o  
the des i red  confining and pore pressure  by in- 
c reas ing  the , conf in ing  pressure,  pore pressure  
and a x i a l  load simultaneously i n  s t e p s  of 500 ps i .  
The des i red  conf in ing  pressure w a s  determined by 
hal f  the  in - s i tu  overburden pressure us ing  a pres- 
su re  grad ien t  of 1 p s i / f t .  Once the  s p e c i f i e d  
hydros t a t i c  and pore pressure w a s  reached, t h e  
a x i a l  load w a s  increased by moving t h e  p l a t e n s  
of t he  MTS load  frame, between which t h e  ce l l  was 
placed, a t  a cons tan t  s t r a i n  r a t e  of 0.000127"/ 
sec u n t i l  t he  sample f a i l ed .  

Var ia t ion  i n  confining pressure  i n  these  
tests was achieved by varying the  pore f l u i d  

Figs (2) and (3) respec t ive ly  show t y p i c a l  
d i f f e r e n t i a l  a x i a l  stress versus s t r a i n  curves 
f o r  t h e  samples tes ted  and t h e  Mohr envelope f o r  
t h e  samples using information on t h e i r  u l t ima te  
s t rengths .  

Figs (4) and (5) show a p l o t  of v a r i a t i o n  
of u l t ima te  s t rength  of t he  rocks throughout t h e  
range of e f f e c t i v e  confining pressures  f o r  t he  
two wells and Fig ( 6 )  and (7) show t h i s  v a r i a t i o n  
wi th  r e spec t  t o  pore f l u i d  pressure.  These p l o t s  
show t h a t  
was increased ,  the u l t imate  s t r eng th ,  s t r a i n  a t  
f a i l u r e  and t h e  angle of f r a c t u r e  a l s o  increased ,  
(b) Mode of f a i l u r e  changed from b r i t t l e  to  
d u c t i l e  around an e f f e c t i v e  confining 

(a) as e f f e c t i v e  confining pressure  
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Figures  ( 6 )  and ( 7 )  show t h a t  a decrease  i n  
pore f l u i d  pressure  from the  condi t ion  when both 
conf in ing  and pore pressure a r e  t h e  same, r e s u l t s  
i n  an  increase i n  u l t imate  s t rength .  It should, 
however, be  not iced  t h a t  an i n i t i a l  decrease  i n  
pore  p re s su re  by about 1000 p s i  i nc reases  t h e  
u l t i m a t e  s t r e n g t h  by approximately 50% compared 
t o  Berea sandstone where an inc rease  of only 38% 
was observed. 

GCOlOOE W a l l  No 1 

4 4  

ondstone 

n 1 . 1  t I I 1 , I . I  , I ,  

EFFECTIVE CONFINING PRESSURE I k p r i  I 
0 2 4 8 8 1 0 1 2  14 

FIGURE 4 
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\ m e a  Sondrlonh 

SCOIOOE W e l l  No 2 

15,647 1 1 1  

0 2 4 6 8 l O f Z 1 4  
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FIGURE 5 
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FIGURE 6 

'0-4 
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FIGURE 7 

pres su re  of 7000 p s i .  For low e f f e c t i v e  confining 
p res su res  (3000 p s i  o r  l e s s )  t h e  samples f a i l e d  
by b r i t t l e  f r ac tu re .  F ig  (8) shows such a trans- 
i t i o n ;  t h e  extension o r  shear  f a i l u r e  i s  sup- 
pressed and flow becomes dominant as confining 
p res su re  increases.  

It may be noted t h a t  f o r  near ly  the  same 
poros i ty ,  (all  samples from w e l l  111 and some 
from w e l l  # 2 ) ,  t h e  u n i a x i a l  compression s t r eng th  
of: the  samples va r i ed  from 4200 t o  4600 ps i .  For 
high e f f e c t i v e  conf in ing  pressures  (around 8000 
p s i )  t h e  s t r eng ths  va r i ed  from 25000 t o  27000 ps i .  
These s t r eng ths  appear t o  be approximately 2/3 of 
t h e  corresponding va lues  f o r  w e l l  consolidated 
Berea sandstone samples t e s t e d  under similar con- 
d i t i ons .  

Not a l l  samples reached a d u c t i l e  s t a g e  f o r  
the  e f f e c t i v e  conf in ing  pressures  used i n  these 
tests b u t  most of them exhib i ted  a p a r t i a l  d u c t i l e  
behavior around 5000 PSI and a t r a n s i t i o n  t o  duc- 
t i l e  around 7000 p s i .  

A good c o r r e l a t i o n  between measured and 
ca l cu la t ed  va lues  of f r ac tu re  angles  was observed 
i n  t h e s e  samples. 
ang le s  under un iax ia l  compression conditions- 
v a r i e d  from 12' t o  22 ' .  
f i n i n g  pressures  were below 3000 p s i ,  t h e  f r ac -  
t u r e  w a s  britt1e;measured and computed f r a c t u r e  
ang le s  matched w e l l .  
t h e  o t h e r  hand, showed b r i t t l e  f r a c t u r e  i n  t h i s  
p re s su re  range. Frac ture  angles increased  wi th  
inc reas ing  e f f e c t i v e  confining pressure  bu t  
never exceeded 43'. The pa t t e rn  of i nc reas ing  
f r a c t u r e  angles  was a l so  predicted by t h e  Mohr 
Envelopes which were non-linear (Fig 3). Since 
most samples exhib i ted  p a r t i a l  d u c t i l e  behavior 
above 5000 p s i ,  an  accurate measurement of t h e  
f r a c t u r e  angles  w a s  d i f f i c u l t  i n  many cases. 

Computed va lues  of f r a c t u r e  

So long as e f f e c t i v e  con- 

Berea sandstone samples on 

F igure  (9) shows a typ ica l  p l o t  of measured 
and ca l cu la t ed  va lues  of f r a c t u r e  angles  wi th  
e f f e c t i v e  conf in ing  pressure. 
t h e  curve is nonl inear  as compared t o  Berea sand- 
s tone ,  F ig  ( l o ) ,  which showed a near ly  linear 
curve  

For most samples 

I n  w e l l  #2, a wider spectrum of un iax ia l  
compression s t r eng ths  was observed (var ied  from 
3000 p s i  t o  7000 p s i ) .  This w a s  because of a 
wide v a r i a t i o n  i n  poros i ty  of t h e  samples. 
wi th  lower p o r o s i t i e s  showed h igher  s t rengths .  
E f f e c t  of an iso t ropy  was not very  much pronounced. 
Sha le  samples showed b r i t t l e  behavior i n  t h e  
range of t h e  confining pressures  used i n  these  
tests . 
Conclusions 

l i k e  a l l  o t h e r  rocks increased as the  e f f e c t i v e  
conf in ing  p res su re  increased. I n  genera l ,  how- 
ever, rocks from geopressured r e s e r v o i r s  appear 
cons iderably  weaker than the  corresponding w e l l  
compacted sandstone samples. This could be  
a t t r i b u t e d  t o  under-compaction of such r e s e r v o i r s  
and t h e  presence of microporosity and'secondary 
po ros i ty  . 

Rocks 

The u l t ima te  s t rength  and s t r a i n  a t  f a i l u r e  

P a r t i a l  d u c t i l e  behavior w a s  observed above 
5000 p s i  and complete t r a n s i t i o n  was observed 
above 7000 p s i  i n  many cases. So long as ef- 
fective conf in ing  pressure w a s  less then 3000 
p s i ,  t h e  rocks f a i l e d  by b r i t t l e  f r ac tu re .  

E f fec t  of pore pressure on rock s t r eng th  was 
very  much pronounced. 
tween observed and ca lcu la ted  angles  of f r a c t u r e  
based on Mohr-Coulomb f r i c t i o n  hypothesis Sug- 
g e s t s  importance of f r i c t i o n .  

Close correspondence be- 
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