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ABSTRACT 

The Rotary-Separator Turbine (RST) is  a con- 
cep t  of Biphase Energy Systems t h a t  has been deve- 
loped f o r  geothermal app l i ca t ions  by Biphase and 
the Electric Power Research I n s t i t u t e  (EPRI) . The 
RST can provide an  e f f i c i e n t  method f o r  ex t r ac t ing  
energy from geopressured b.rines. I n  t h i s  applica- 
t i o n  t h e  RST would develop s h a f t  power from t h e  
thermal and pressure  energy of the b r i n e  and would 
recovery chemical energy as methane ava i l ab le  f o r  
d i s t r i b u t i o n .  A comparative ana lys i s  of concep- 
t u a l  designs f o r  an  RST system and a two-stage 
f l a s h  system ind ica t e s  t h a t  t h e  RST system could 
d e l i v e r  e l e c t r i c i t y  a t  a cos t  about seven percent 
lower than a two-stage f l a s h  system. Use of t h e  
Biphase Rotary Separa tor  may r e s u l t  i n  more com- 
p l e t e  recovery of methane than is poss ib l e  wi th  
g rav i ty  gas-liquid separa tors .  

INTRODUCTION 

Geopressured energy is  one of four  recognized 
forms of geothermal energy. 
dry  steam, h o t  water, and ho t  rock. 
energy d i f f e r s  from t h e  o ther  forms i n  t h a t  t h e  
r e se rvo i r s  which se rve  as its source  a r e  under 
extremely high pressures  (>lo ,000 p s i ) ,  are loca- 
t ed  deep beneath t h e  e a r t h ' s  s u r f a c e  (212,000 f t ) ,  
and contain l a r g e  amounts of d i sso lved  n a t u r a l  
gas (CH4). 
vary from 100 t o  555OF and have an  average tem-  
pe ra tu re  t h a t  has been estimated a t  >300°F. 
chanica l  energy is recoverable from the  thermal 
and pressure  energy of t h e  b r ine .  Chemical ener- 
gy is  recoverable from t h e  d isso lved  methane. 
The l a r g e s t  geopressured region i s  i n  t h e  Gulf 
of Mexico bas in  i n  Texas and Louisiana. 

The o ther  forms are 
Geopressured 

The temperatures of these  r e se rvo i r s  

Me- 

Commercialization of geopressured energy w i l l  
r equ i r e  : 

1. 

2. 

3.  

This paper descr ibes  the Biphase system and 
eva lua tes  i ts usefu lness  i n  processing the  b r i n e  
a t  the  wellhead by comparing i ts  performance t o  
t h a t  of a two-stage, flashing-steam tu rb ine  
system (Helgeson and Cer in i ,  1981). 

BIPHASE TURBINE SYSTEM DESCRIPTION 

Data are not y e t  ava i l ab le  t o  f u l l y  charac- 
t e r i z e  e i t h e r  geopressured resources o r  geopres- 
sured w e l l  performance. 
is  based on a n  assumed set of parameters which 
cha rac t e r i ze  t h e  geopressured br ine :  tempera- 
t u r e ,  325OF; wellhead pressure,  2000 ps i a ;  meth- 
ane content,  40 SCF/Bbl b r ine ;  and w e l l  production 
rate, 40,000 Bbl/day. The values chosen agree  
s a t i s f a c t o r i l y  with t h e  wellhead parameters re- 
ported f o r  t h e  P leasant  Bayou Well No. 2, i n  
Brazoria County, Texas. 

Therefore t h i s  s tudy  

The Biphase wellhead conversion system 

The 
which takes  advantage of t h e  th ree  forms of geo- 
pressured energy is shown i n  Figure 1. 
th ree  s t ages  of t h e  process a r e  ( s e v e r a l  gas 
p u r i f i c a t i o n  s t e p s  are no t  shown): 

1. A f i r s t - s t a g e  hydraulic t u rb ine  f o r  
power recovery,  

2 .  A second-stage Biphase tu rb ine  f o r  
power and methane recovery, 

z 
REINJECTION WELL 

t 
CH4 1 750PSIA 

AUXl LIAR1 ES 1 
BRINE 14 7 PSlA Em cH4 100 PSlA 5- Greater knowledge of t h e  quant i ty  of 

methane i n  p l ace  i n  t h e  geopressured 
r e se rvo i r s  and t h e  f r a c t i o n  produceable. 

Greater knowledge of t h e  f r a c t i o n  of 
t he  geopressured energy t h a t  is eco- 
nomically recoverable a t  t h e  wellhead. 

Improved d r i l l i n g  technology f o r  oper- 
a t i n g  a t  t h e  high pressures  and g rea t  
w e l l  depth involved. 

STEAM 14 7 PSIA 

STAGE 2ND STAGE 3RO STAGE 
HYDRAULIC BIPHASE ROTARY EIPHASE ROTARY 
TUREINE SEPARATOR-TURBINE SEPARATOR*TURBlNE 

4 1 M W  3 8  MW BRINE 3 3 M W  

Figure 1. Schematic of Biphase geopressured 
energy-recovery sys tern. 

70 7 



Helgeson and Cer in i  

3. A th i rd-s tage  Biphase tu rb ine  f o r  
power recovery from t h e  remaining ho t  
l i q u i d ,  toge ther  with a steam turb ine .  

Hydraulic energy is recovered i n  t h e  f i r s t -  
s t a g e  tu rb ine .  
from t h e  expansion of t h e  two-phase b r i n e  stream 
i n  t h e  second-stage Biphase turb ine .  The forma- 
t i o n  of s m a l l  b r i n e  d rop le t s  and t h e  high cen t r i -  
fuga l  fo rces  developed i n  t h e  Biphase ro ta ry-  
s epa ra to r  t u rb ine  a l so  assist i n  t h e  recovery of 
methane from t h e  b r i n e  i n  t h i s  s t age .  I n  t h e  
t h i r d  s t a g e  t h e  thermal energy of t h e  b r i n e  is 
converted t o  mechanical energy. 

Hechanical energy i s  produced 

It i t  is assumed t h a t  t he  geopressured b r i n e  
is  sa tu ra t ed  wi th  methane a t  a bottom-hole pres- 
s u r e  of 10,000 p s i a  and 300°F, i t  contains 
%40 SCF/Bbl of methane. As t h i s  pressure  is  re- 
leased  t o  1000 p s i  ( f i r s t - s t a g e  turb ine)  approxi- 
mately 80 percent of t h e  methane becomes thermo- 
dynamically inso luble .  
from s o l u t i o n  i n  t h e  hydraul ic  t u rb ine ,  i t  w i l l  
be  r e in j ec t ed  as a gas phase t o  t h e  second-stage 
Biphase tu rb ine  ( see  dashed l i n e  i n  Figure 1 ) .  
I f  it does no t  evolve from so lu t ion  by t h e  t i m e  
t h e  b r i n e  e x i t s  from t h e  hydraul ic  t u rb ine ,  t h e  
methane is  c a r r i e d ,  i n  so lu t ion ,  t o  t h e  second- 
s t a g e  Biphase turb ine .  

If  the  methane evolves 

For t h e  second-stage o u t l e t  a pressure  of 
100 ps i a  is  assumed. Subt rac t ing  t h e  p a r t i a l  
p ressure  of water, t h e  equilibrium p a r t i a l  
p ressure  of t h e  methane is  40 psia.  Assuming 
thermodynamic equilibrium, 99.6 percent of t h e  
n a t u r a l  gas could be recovered a t  t h e  exit of 
t h e  second-stage turb ine .  

The t h i r d  s t a g e  is  similar t o  a geothermal 
s t a g e  where t h e  thermal energy of t h e  b r i n e  is 
used t o  genera te  mechanical energy (Cer in i ,  1979). 
The b r i n e  is expanded from 100 p s i a  t o  14.7 ps i a ,  
producing power i n  t h e  Biphase r o t a r y  sepa ra to r /  
tu rb ine .  Separated steam (and non-condensable 
gas) are expanded from 14.7 p s i a  t o  1.3 p s i a  i n  a 
conventional steam turb ine .  

It has been assumed t h a t  vapor-liquid equi- 
l ib r ium w i l l  b e  achieved i n  each s t age .  In  f a c t ,  
t h i s  may not  b e  t rue .  For t h e  t h i r d  s t a g e  (br ine /  
steam, single-component system) phase equilibrium 
is achieved wi th in  2'F. For t h e  f i r s t  and second 
s t ages ,  however, where both t h e  temperature and 
t h e  methane conten t  of t h e  phases must be  consid- 
e red ,  da t a  are not  ava i l ab le  t o  quant i fy  t h e  de- 
pa r tu re  from equilibrium t h a t  may occur. D i f f i -  
cu l ty  i n  sepa ra t ing  t h e  n a t u r a l  gas from t h e  b r i n e  
is an t i c ipa t ed ,  and i t  is believed t h a t  t h e  high 
g-forces generated i n  t h e  ro t a ry  sepa ra to r  may a i d  
i n  achieving a c l o s e r  approach t o  equilibrium than  
is poss ib l e  i n  g rav i ty  separa tors .  I f  so, t h i s  
would inc rease  t h e  f r a c t i o n  of n a t u r a l  gas recov- 
e r a b l e  from geopressured b r ine .  

BIPHASE TURBINE 

Generation of power with t h e  Biphase tur -  
b ine  depends upon t h e  c rea t ion  of a high-velocity 
j e t  by expansion of a gas-liquid mixture through 
a nozzle (Cer in i ,  1980). For t h e  th i rd-s tage  
tu rb ine  t h i s  ca l cu la t ion  is  made using a two- 
phase (gas- l iqu id) ,  one-component (water) compu- 
ter program. 
discussed i n  d e t a i l  (Cerini ,  1980). 

These ca lcu la t ions  have been 

For t h e  second-stage tu rb ine  a sepa ra t e  
computer program f o r  a two-phase, two-component 
(water-methane) system was used. After determin- 
a t i o n  of t h e  j e t  ve loc i ty  ex i t i ng  t h e  nozz le ,  the 
power recoverable  from the  Biphase tu rb ine  can 
b e  determined from 

where nst = combined ef f ic iency  of t h e  l i q u i d  
sepa ra to r  and l i q u i d  turb ine  (%0.80), 

n G  = geometric cor rec t ion  f a c t o r  (%0.9), 

5 = l i q u i d  mass flow-rate, and 

V = j e t  ve loc i ty  a t  nozz le  e x i t .  
j 

The nozzle-exit  jet  ve loc i ty  f o r  t h e  second- 
s t a g e  tu rb ine  w a s  ca lcu la ted  as a func t ion  of  gas 
content of t h e  geopressured b r ine .  
t hese  ca l cu la t ions  f o r  an assumed second-stage 
i n l e t  p ressure  of 1000 and an  o u t l e t  p re s su re  of 
100 p s i a  are shown i n  Figure 2. The amount of 

The r e s u l t s  of 

I n  t h e  proposed Biphase system, energy is 
consumed a t  t h e  wellhead by t h e  requirements t o  
compress t h e  n a t u r a l  gas t o  p ipe l ine  pressure,  
e l eva te  t h e  used b r i n e  t o  r e i n j e c t i o n  pressures ,  
and power miscellaneous wellhead equipment. 

I I I 1 I I I 
Bo 90 120 160 180 30 

METHANE CONTENT OF GEOPRESSURE BRINE (SCFB) 

Figure 2. Calculated second-stage nozz le  o u t l e t  
ve loc i ty  vs .  methane content of b r ine .  
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constant.  
(using t h e  same b a s i s  as used by Wilson) were 
estimated a t  $60.6 mil l ion .  

Capi ta l  cos t s  of the  Biphase system n a t u r a l  gas present i n  the  b r ine  is indica ted  i n  
terms of standard cubic f e e t  per b a r r e l  of 'b r ine  
(SCFB). The r e s u l t s  show t h a t  a s i g n i f i c a n t  in- 
c rease  i n  j e t  ve loc i ty  r e s u l t s  from increased gas 
content of t he  br ine .  Note t h a t  power inc reases  
as the  square of t he  j e t  ve loc i ty .  The ca lcu la-  
t i o n s  were extended over a wide range of gas con- 
t e n t  t o  account f o r  t h e  p o s s i b i l i t y  of super-  
s a tu ra t ed  concentrations of gas i n  the  b r i n e .  
The gas content of t h e  b r ine  used f o r  t h e  economic 
por t ion  of t h i s  study was 40 SCFB. The e f f e c t  of 
varying Henry's contsant,  K ( f o r  d i s so lu t ion  of 
methane i n  the  b r i n e ) ,  was determined t o  be  of 
secondary importance i n  determing the  j e t  
ve loc i ty .  

The s t a t e d  conditions and the  power recover- 
a b l e  from t h e  Biphase system a r e  shown i n  Table 1, 
toge ther  with r e s u l t s  of a two-stage f l a s h  sys- 
t e m  (Wilson, 1977). The energy required t o  
compress the  methane, t o  e l eva te  t h e  waste  b r i n e  
t o  r e i n j e c t i o n  pressure,  and f o r  various o the r  
wellhead-processing operations is a l so  repor ted .  

ELECTRICAL POWER 
GENERATION 

BRINE TEMPERATURE 

HYDRAULIC TURBINE 
STEAM TURBINE 
GENERATOR 
2ND-STAGE BIPHASE 
TURBINE 

TURBINE 
3R D-STAG E B I PH ASE 

TOTAL 

METHANE AT 35% 
EFF IC1 ENCY 

ELECTRICAL POWER 
CONSUMPTION 

METHANE COMPRESSION 
BRINE REINJECTION 

AUXl LIAR1 ES 
TOTAL 

NET ELECTRICAL POWER 
PROD UCTlO N 
~~ ~~ 

ANNUAL ELECTRICAL 
ENERGY PRODUCTION 
(kW x 365 x 24 x 0 91 
(METHANE EXCLUDED1 

TWO-STAGE FLA 
IW I LSON .1977 

325 
5 6  

20 8 

- 
- 
26 4 

(58 01 

0 4  
1 4  
1 4  
3 2  

23 2 

182 1 

Table 1. Summary of power generation 
and consumption. 

- 
IIPHASE - 
325 
3 3  

18 3 

> 4  1 

3 3  

29 5 
(58 01 

1 8  
1 4  
1 4  
4 7  

24 a 

I95 5 

- 

SYSTEM POWER RECOVERY AND ECONOMIC ANALYSIS 

According t o  ava i l ab le  s tud ie s  t h e  c o s t s  f o r  
producing, d i s t r i b u t i n g ,  and disposing of t h e  b r ine  
are t h e  major cos t  items i n  producing energy from 
geopressured resources.  Wilson (1977) estimated 
c a p i t a l  cos t s  f o r  t h e  b r i n e  system at  $37.0 mi l l ion  
of a t o t a l  $60.00 mi l l i on  investment f o r  a two- 
s t a g e  f l a sh ing  25-MWe geopressured f a c i l i t y .  

To compare t h e  Biphase rotary-separator tu r -  
b ine  with t h i s  system, a l l  cos t s ,  except f o r  t he  
wellhead processing equipment, are assumed 

The e l e c t r i c a l  power generated, t h e  e l e c t r i -  
c a l  power consumed, and the ne t  e l e c t r i c a l  power 
produced by the  two processing approaches is  
shown i n  Table 1. An aux i l i a ry  power d e b i t  of 
1.4 MWe w a s  assumed f o r  both cases. The addi- 
t i o n a l  e l e c t r i c a l  power t h a t  could be  generated 
i f  a l l  t h e  methane recovered were used f o r  t h a t  
purpose i s  shown i n  parentheses ( a  thermal e f f i -  
ciency of 35 percent f o r  conversion of t h e  che- 
mical energy of t h e  methane t o  e l e c t r i c a l  power 
was assumed). 

To determine the  cos t  of t he  geopressured 
energy, assumptions were made cons i s t en t  with 
those of Wilson (1977), and included a 12.8 per- 
cen t  return-on-investment, a f i v e  percent depre- 
c i a t i o n  rate on a s t r a i g h t - l i n e  b a s i s ,  fou r  per- 
cent f o r  general  adminis t ra t ive  overhead and 
taxes ,  and an operating cos t  a t  e igh t  percent of 
t h e  c a p i t a l .  The n a t u r a l  gas was assumed t o  
have a va lue  of $2.OO/MCF. 
t h e  c r e d i t  ob ta inable  from the  n a t u r a l  gas re- 
covered and the  ne t  annual cos ts  are shown i n  
Table 2. The cos t  of e l e c t r i c i t y  i n  mills/kWh 
w a s  determined from t h i s  and the  annual kwh pro- 
duced. The cos t  of e l e c t r i c a l  energy as deter- 
mined by Wilson (1977) was s i x  percent g rea t e r  
than t h a t  ca lcu la ted  f o r  t h e  Biphase case. 

The t o t a l  annual cos t ,  

METHANE CONTENT OF BRINE - 40 SCF/Bbl 

METHANE VALUE - $2 00/1 

GROSS ANNUAL 
OPERATING COSTS 
(CAPITAL INV 1 x (0 128 
+ 0 05 + 0 04 + 0 0 8 )  

VALUE OF NATURAL GAS 
($2 00 x (MSCF/YRI 

NET ANNUAL 
OPERATING COST 

ANNUAL ELECTRICAL 
POWER PRODUCTION 
(FROM TABLE 11 

COST OF 
ENERGY 

ELECTRICAL 

C F  

TWOSTAGE 

IWILSON. 1977) 
FLASH 

I106 $1 

(lo6 $1 

(lo6 $1 

(lo6 kWh1 

(MI LLSl kWh) 

18 01 

8 94 

904  

182 1 

49.6 

- 
B I PH AS E - 

ia  05 

8 94 

9 1 1  

195 5 

46 6 - 
Table 2. Summary of cos t s  f o r  producing elec- 

t r i c a l  power from geopressured b r ine  
r e se rvo i r s .  

CONCLUSIONS 

A process u t i l i z i n g  the  Biphase ro ta ry-  
s epa ra to r  t u rb ine  f o r  recovery of t h e  methane and 
f o r  genera t ion  of e l e c t r i c a l  power at  t h e  w e l l -  
head has  been analyzed. Energy ca l cu la t ions  were 
performed and an economic ana lys i s  has shown t h a t  
t h e  cos t  of electrical energy generated by the  
Biphase system is 46.6 mills/kWh compared t o  t h a t  
of 49.6 mills/kWh when a two-stage f l a s h  system 
is used. I n  add i t ion  t o  t h i s  advantage i n  power 
generation, t h e  Biphase rotary-separator tu rb ine  
may a l s o  provide an advantage f o r  s epa ra t ing  
t h e  evolving methane from the b r ine .  
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