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ABSTRACT 

Geothermal d i s t r i c t  space hea t ing  systems t h a t  
are s ized  t o  accommodate extreme weather 
condi t ions w i l l  have excess  capac i ty  during t h e  
milder por t ions  of t h e  year .  By incorporat ing a 
lower-capital-cost, higher-fuel-cost system f o r  
se rv ic ing  t h e  peak hea t ing  requirements, t h e  
excess geothermal capac i ty ,  and therefore  t h e  
t o t a l  annual c o s t ,  may be reduced. A model t h a t  
approximates t h e  least c o s t  percent  of peak 
demand, for which t h e  geothermal, system should be 
s ized ,  is  developed i n  t h i s  paper. 

INTRODUCTION 

Energy supply systems t h a t  f a c e  annual t i m e  
var ian t  demands f o r  sheat w i l l  encounter por t ions  
of the  year  in which t h e r e  w i l l  be i d l e  system 
capacity. Geothermal d i s t r i c t  space hea t ing  
systems and e l e c t r i c  u t i l i t i e s  are s i m i l a r  i n  
t h i s  respec t .  Both encounter energy use p a t t e r n s  
which a r e  not  uniformly d i s t r i b u t e d  throughout 
the  year. Rather t h e  peak demands of t h e  systems 
are concentrated i n  some p o r t i o n  of t h e  year. I n  
the  production of e l e c t r i c i t y ,  minimization of 
c o s t s  t o  consumers i s  der ived from supplying some 
base load with a c a p i t a l  i n t e n s i v e ,  low f u e l  c o s t  
system (see Reference 1). The remainder of t h e  
peak heat  demands a r e  then suppl ied with a system 
which has  lower c a p i t a l  c o s t s  and higher f u e l  
cos t .  The determinat ion of t h e  proportions of 
peak system requirements t h a t  w i l l  be a l l o c a t e d  
t o  d i f f e r e n t  f u e l  types is  c a l l e d  an optimal f u e l  
mix c a l c u l a t i o n .  Accordingly, t h e  objec t ive  of 
t h i s  paper is t o  present  a genera l ized  model t h a t  
approximates an  optimal f u e l  mix f o r  geothermal 
d i s t r i c t  space heat ing systems. 

The concept of hybrid energy systems is, of 
course, w e l l  e s tab l i shed .  Many times a 
conventional f u e l  is  used t o  augment t h e  
geothermal b r i n e  t o  obta in  a higher  temperature 
working f l u i d  ( see  Reference 3). I n  a d i s t r i c t  
space hea t ing  system, however, t h e  impetus f o r  
mixing f u e l s  i s  somewhat d i f f e r e n t .  As opposed 
t o  preheat ing,  the  o b j e c t i v e  here  is t o  minimize 
t h e  annual c o s t s  of supplying space condi t ioning 
t o  a user d i s t r i c t .  

GENERAL 

respons ib le  for ensuring s u f f i c i e n t  capaci ty  t o  
serv ice  t h e  peak h e a t  demands of t h e  user  area 
while a l s o  at tempting t o  minimize t h e  c o s t  of 
t h a t  capac i ty .  The primary source of c o s t  
savings to t h e  planner  is the  i n e v i t a b l e  and 
expensive excess capac i ty  which t y p i f i e s  
geothermal d i s t r i c t  space hea t ing  systems (see 
Reference 5 ) .  For a good p o r t i o n  of t h e  year  
t h e r e  w i l l  e x i s t  some i d l e  production w e l l  
capaci ty .  This i s  simply a r e s u l t  of t h e  
normal temperature f l u c t u a t i o n s  throughout t h e  
year. Addi t iona l ly ,  s ince  increments t o  t h e  
capac i ty  of t h e  system a r e  more d i s c r e t e  than 
continuous, s i n g u l a r  use of geothermal h e a t  
w i l l  r e q u i r e  some excess capac i ty  even during 
peak demand per iods.  The p lanners  o b j e c t i v e  
might then be thought of as minimizing t h e  c o s t  
of n a t u r a l  excess capaci ty  while  guaranteeing 
de l ivery  of hea t  t o  a l l  consumers on t h e  
co ldes t  day of the  year .  

A p o t e n t i a l l y  a t t r a c t i v e  a l t e r n a t i v e  f o r  t h e  
planner would be t o  cons t ruc t  a f o s s i l  f u e l  
f i r e d  b o i l e r  a s  a peaking h e a t  source f o r  t h e  
geothermal system. Though t h e  energy charges 
f o r  using t h e  b o i l e r  may be high t h e r e  are two 
b e n e f i t s  which may serve t o  o f f s e t  t h e s e  
expendi tures .  F i r s t ,  because t h e  c a p i t a l  c o s t s  
of the  b o i l e r  would be i n s i g n i f i c a n t ,  it could 
be s ized  t o  serve t h e  e n t i r e  load i n  case of an  
emergency. And secondly, because of t h e  low 
c a p i t a l  c o s t ,  t h e  c o s t  of excess capac i ty  
during warmer per iods  could be minimized. 

THE MODEL 

For planning purposes assume t h a t  t h e  
geothermal d i s t r i c t  space h e a t i n g  system is 
broken i n t o  t h r e e  c a p i t a l  expendi ture  
components. A geothermal d e l i v e r y  system 
component, a f o s s i l  f u e l  peaking system 
component, and a d i s t r i b u t i o n  system component. 
The geothermal de l ivery  system component 
c o n s i s t s  of wel l - f ie ld  and t ransmission 
expendi tures  required t o  br ing  t h e  geothermal 
b r i n e  t o  t h e  user  d i s t r i c t .  The f o s s i l  f u e l  
peaking system component is simply the  c o s t  of 
t h e  i n s t a l l e d  b o i l e r  a t  o r  near  t h e  user  
center .  F i n a l l y ,  t h e  d i s t r i b u t i o n  system 
c o n s i s t s  of c o s t s  f o r  d i s t r i b u t i n g  hot  water 
wi th in  t h e  user  network. 

The geothermal system planner  I s  pr imar i ly  
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For t h e  present  exerc ise  t h e  d i s t r i b u t i o n  c o s t s  
are sunk c o s t s .  I r r e s p e c t i v e  of t h e  r e l a t i v e  
c a p a c i t i e s  of t h e  f i r s t  two components, t h e  
d i s t r i b u t i o n  system component can be assumed 
f ixed .  The planner  is then faced with a 
trade-off between t h e  o p e r a t i n g  and c a p i t a l  
expendi ture  c h a r a c t e r i s t i c s  of .the two h e a t  
sources  in supplying t h e  peak hea t ing  
requirements of t h e  d i s t r i b u t i o n  network. 

The annual c o s t  of t h e  geothermal de l ivery  system 
component is determined by s e v e r a l  f a c t o r s .  
Included in the  c o s t  of t h i s  component are annual 
c o s t s  of production and i n j e c t i o n  wells, 
amort izat ion of a l l  pumps requi red ,  and t h e  
annual c o s t  of t h e  t ransmission l i n e  which 
connects t h e  geothermal anomaly t o  t h e  user  
center .  In a d d i t i o n  t o  t h e  annualized c a p i t a l  
c o s t s  are t h e  annual opera t ing  and maintenance 
c o s t  of these  items and e l e c t r i c i t y  c o s t  t o  run 
the  pumps. Each of these c o s t  items i n  turn  a r e  
determined by geophysical, h e a t  demand, and 
engineer ing c h a r a c t e r i s t i c s  of t h e  system. The 
number of production and i n j e c t i o n  wells are 
determined by t h e  temperature of the  resource,  
t h e  flow rate, and t h e  peak h e a t  requirements 
from t h e  geothermal system component. The c o s t  of 
each of these  wells is determined l a r g e l y  by t h e  
depth t o  the  resource. The t ransmission 
investment is determined by t h e  d i s t a n c e  between 
the  geothermal resource and t h e  user  c e n t e r ,  t h e  
peak h e a t  requirements, and t h e  temperature of 
the  resource.  The pump c o s t  and its requi red  
e l e c t r i c i t y  c o s t  is determined by the  depth t o  
t h e  resource ( see  Reference 2 ) .  A previous 
a n a l y s i s  ( see  Reference 4) sugges ts  a geothermal 
de l ivery  system c o s t  equat ion of t h e  form, 

The t o t a l  annual cos t  of t h e  d e l i v e r y  system is  
then , 

TSC a (3)  

where, 

X = percent  of peak suppl ied by the  / 

geothermal system component, and 

GSC = eBo x i  Bixp *p i = l . . .n  

where, 
where, 

@ = percent  of annual h e a t  demand. 

Clear ly  t h e  planning o b j e c t i v e  is concentrated 
i n  solving f o r  i n  (3) such t h a t  t h e  value of 
t h e  d e l i v e r y  system c o s t  func t ion  is minimized. 
However, one inconsis tency appears  i n  (3) which 
must f i r s t  be resolved. The geothermal system 
component is determined by t h e  peak heat  
requirements. The peaking system, however, is 
shown t o  be a func t ion  of t h e  annual hea t  
requirements. In order  t o  express  t h e  peaking 
system c o s t  funct ion wi th  peak ins tead  of 
annual h e a t  demand, t h e  r e l a t i o n s h i p  between 
peak and annual  must be determined. 

A l imi ted  examination of t h r e e  c l i m a t i c a l l y  
d i f f e r e n t  c i t ies  revealed an  expected 
r e l a t i o n s h i p  between t h e s e  two var iab les .  
Using hea t ing  degree days per  day a t  peak, and 
cumulative annual hea t ing  degree days, t h e  
derived observat ions were c a l c u l a t e d  as i n  (4) 
and (5): 

H-D 

H 
A i  = - (4) 

GSC = annual geothermal system c o s t  
(operat ing and c a p i t a l  amor t iza t ion) ,  

Xi = explanatory v a r i a b l e s  o t h e r  than peak 
h e a t  demand (geophysical and 
geographical f a c t o r s ) ,  and 

Xp = peak hea t  demand MMBTU/HR. 

A general  c o s t  func t ion  f o r  t h e  peaking system is 

PSC = P + aA (2) 

where, 

PSC = annual c o s t  of peaking system ( c a p i t a l  
amort izat ion and f u e l  c o s t ) ,  

P = annual amort izat ion of 
b o i l e r ,  

a = p r i c e  per  MMBTU convent ional  
f u e l ,  and 

( 5 )  

X i  = percent  of hea t ing  degree days per  
day a t  peak, 

@ i  = percent  of t o t a l  annual hea t ing  
degree days, 

H = heat ing  degree days observed on t h e  
c o l d e s t  annual day, 

Di = degree days on t h e  i t h  day, 

C = cumulative annual hea t ing  
Di degree days c o n s i s t e n t  wi th  

t h e  i t h  degree day 
observat ion.  

T = t o t a l  annual hea t ing  degree days. 

P a r t i a l  r e s u l t s  are given i n  Table  1 and t h e  
general  shape of t h i s  r e l a t i o n s h i p  is 
i l l u s t r a t e d  i n  Figure 1. 

A = annual h e a t  required from 
peaking system, MMBTU/YR. 



Houldsworth 

CONCLUSIONS 

.50 .39 - 4 3  

.76 .68 .72 
.89 - 9 2  
----I 

I 151 1 . 94  
---- 

Table 1. Percent  of annual demand which could 
be suppl ied by systems designed f o r  X percent 
of peak demand f o r  t h r e e  c i t ies .  

0 5  

0 4  

0 3  

I - -  
I .  

Figure 1. Percent  of annual demand which could 
be suppl ied  with a system designed f o r  X percent  
of peak demand. 

Two s i g n i f i c a n t  conclusions can be drawn from 
Table 1. As expected, the  percent  of annual 
demand which could be suppl ied i n c r e a s e s  as the  
percent  of peak demand which could be supplied 
increases .  Moreover, the  percent  of annual 
demand which could be supplied v a r i e s  inverse ly  
wi th  t h e  peakiness of the  weather pa t te rn .  I f  
t h e  r a t i o  of peak t o  annual hea t ing  degree days 
f a l l s ,  t h i s  i n d i c a t e s  a d e c l i n e  i n  t h e  peakiness 
of t h e  weather p a t t e r n .  Natura l ly ,  communities 
which have r e l a t i v e l y  peakless  climates should 
f i n d  t h a t  they w i l l  be a b l e  t o  supply a g r e a t e r  
percent  of annual hea t  demand f o r  a given percent 
peak. 

Rela t ing  t h e  d a t a  and t h e  observa t ions  developed 
above, we f i n d  t h a t  

0 = a X 2 + b X  + c  . (6) 

Equation (3) can now be r e w r i t t e n  with cons is ten t  
v a r i a b l e s  such t h a t  

TSC = e Bo Xi Bi + P 

+ (1-aA2 -bX - c) A . (7) 

F i n a l l y ,  t h e  minimum of (7) can be found where 

A general  conclusion is t h a t  geothermal 
d i s t r i c t  system planners  and modelers should 
consider  t h e  i n c l u s i o n  of a f o s s i l  fue l  f i r e d  
b o i l e r  f o r  meeting the  peak requirements of a 
given system. This  is  e s p e c i a l l y  t r u e  i n  a r e a s  
where geothermal capaci ty  charges are expensive 
and peak demand periods are extreme and 
shor t l ived .  The model developed above i s  
intended t o  assist both planners  and modelers 
i n  c a l c u l a t i n g  t h e  optimum percent  of peak 
demand which t h e  geothermal system should 
supply 
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