NOTICE CONCERNING COPYRIGHT RESTRICTIONS

This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material.

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

THE UTILIZATION OF GEOTHERMAL RESOURCES AT UNITED STATES AIR FORCE BASES

Paul K. Grogger, Associate Professor

Department of Geology and Applied Earth Sciences University of Colorado, Colorado Springs, Colorado Air Force Engineering and Services Center, Florida

ABSTRACT

The use of geothermal energy is one of the few energy sources which may be an answer to our present and future energy crisis.

The Air Force installations on the continental United States as well as Alask and Hawali, were evaluated as to the possibility of utilizaing geothermal energy to develop electricity, produce process steam, or heat and/or cool buildings. Twenty-five bases have suspected geothermal resources available. Because of either need and available technology seven installations were rated priority I, six were rated priority II and priority III and IV totaled ten.

Geological and geophysical data indicated further investigation of the priority I installations, Saylor Creek Range, Idaho, Ellsworth AFB, South Dakota, Charleston AFB, South Carolina, Kirtland AFB, New Mexico, Vandenberg AFB, California, Luke AFB, Arizona, and Williams AFB, Arizona, should be accomplished as soon as possible.

The use of geothermal energy will decrease the need for fossil fuels by the USAF and during times of short supply allow such fuels to be used for the Air Force's primary mission, military defense.

INTRODUCTION

The United States Air Force (USAF) has become increasingly interested in developing alternative energy resources and lessening their dependence on unstable and decreasing energy sources. Since the mid-70's and the 1973 embargo of fossil fuels by OPEC.

Previous studies (1,2) have investigated possible geothermal areas in or near the following United States Air Force Bases: Dover AFB, Dover, Delaware; Mountain Home AFB, Mountain Home, Idaho; Kingsley AFB, Klamath Falls, Oregon; Bellows AFB, Waimanalo, Oahu, Hawaii, and Williams AFB, Chandler, Arizona.

LOCATION AND EVALUATION OF POSSIBLE GEOTHERMAL AREAS ON AIRFORCE PROPERTY

Using previous knowledge of potential areas, the Known Geothermal Resource Area's (KGRA) of the United States Geological Survey (USGS) and material at the USGS geologic research libraries at Denver, Colorado and Reston, Virginia, a list of air bases that needed to be geologically evaluated was developed. Further geological and geophysical investigation of the geothermal potential determined whether they were of primary or secondary importance and separated the locations into their potential as to electricity, cooling, and/or heating and each of these categories were classified as to being an area of high, moderate, or low possibility. (Table 1)

The final analysis of the geothermal potential of USAF bases included an energy consumption and utilization review as well as a general economic evaluation. From this final analysis the air bases were again classified as to being a primary or a secondary prospect. Using this methodology, seven installations were considered to have a high possibility for utilizing geothermal resources in one or more ways: Ellsworth AFB, South Dakota; Saylor Creek Range, Idaho; Williams AFB, Arizona; Kirtland AFB, Albuquerque, New Mexico; Vandenberg AFB, Lompoc, California; Charleston AFB, Charleston, South Carolina; and Luke AFB, Phoenix, Arizona.

Further geologic investigation, remote sensing as well as initial geophysical and geochemical studies of seven of the eight high possibility bases, excluding Williams AFB, will be attempted during the 1980-81 period, as funding for such research is obtained. If enough funding is obtained, six other bases will also be investigated further: Mountain Home AFB, McClelland/ Mather AFB's, Sacramento, California; Davis-Monthan AFB, Tucson, Arizona; Edwards AFB, Rosamond, California; Holloman AFB, Almogordo, New Mexico; and Bellows AFB and Wheeler AFB, Hawaii.

Specific data obtained, economic feasibility, and the type of geothermal resourc(s) available are listed in Table 2. During the time this report was written, no magma or vapor-dominated geothermal systems have been positively identified; Keesler AFB, Mississippi and Ellington AFB,

Air Base Possibility List	Intensive Geologic Research	Further Earth Science Review, Phone Calls&Visits	After Base Energy Consumption & Utiliza- tion Reyiew
Dover	s ¹	L ⁴	No
Ellsworth	S	G (heating)	P ¹
Mtn Home	S	M (heating)	P
Saylor Creek	P	M (electricity)	P ⁶
Williams	р ²	G (electric/cooling)	P ⁶
Keesler	S	L	s ³
Davis- Monthan	P	M (cooling)	P
Edwards	P	H (heating) M (cooling)	P
George	P	M (cooling)	S
Hickam	P	L	No
Holloman	P	M (cooling)	P
Kingsley	P	H (heating)	S
Kirtland	P	G (cooling)	Р
March	S	M (cooing)	S
McClellan/ Mather	p ³		
Norton	S	M (cooling)	
Vandenberg	P	M (cooling)	P
Wheeler	S	M (cooling)	S
Langley	P	M (heating)	S
Charleston	P	H (cooling)	P
Ellington		H (electric) ⁴	
Luke		H (cooling)	P
Bellows		M (electric)	P
Offutt		M (heating)	S

TABLE 1. A TIME REVIEW OF THE DETERMINATION OF THE POSSIBLE UTILIZATION OF GEOTHERMAL RESOURCES AT UNITED STATES AIR FORCE BASES

Genoa, Texas, are located above geopressed systems. McClellan and Mather AFBs, Sacramento, California may be located on a geopressed system. The seven possible hot dry rock sytems are indicated in Table 2. To develop the hot dry type of geothermal resource, assistance from the Department of Energy's Hot Dry Rock section at Los Alamos Scientific Laboratories will be necessary. The primary geothermal system found at USAF bases is the water-dominated system with fourteen of the twenty-five bases having a strong possibility of such a system being utilized.

Electrical production may be possible at five bases: Saylor Creek, Davis-Monthan, Bellows, Luke, and Williams AFBs. With further technological advances the possibility of electrical productions at six other bases could become reality: Charleston, Kirtland, Edwards, Vandenberg, Kessler, and Ellington AFB's.

The final rating of priority for further investigation of Air Force installations is illustrated in Table 3. The priority listing is based on geothermal resource data and the need for geothermal utilization. TABLE 2. FACTORES CONSIDERED IN DETERMINING THE POSSIBILITY OF GEOTILEMAL UTILIZATION AT US AIR FORCE BASES

Air Base	locat ion	Countand	Vapor-dominated	Type of Geotherm Water-dominated	i Resource ""	Constant	Economic	Record	submarginal	Electricity	Type of Pu Fuel oil	el and amount Natural gas	of energy (Propane	Cosl
			Vapor-dominated	Water-dominated	not ary rock	Captessed	ECOIRGIE CE	nerginer	onoiter Briter	electricity	Anel ort	-	i t opano	
. Nto ilana/	Mta Bome,	TAC	Possible	100°C at 4Km			iteat ing			572,704	155,016	57,844		336, 2
· Saylor,	10			100°C to 200°C			Electric	Electric		583,004	121, 573	5,930		324,5
Greek		MAC		at 4Km 48°C at 1Km	x					699,352	698,256			
. Dover	Dover, DE	MAC		40 5 81 148	•					801,479	754,629			
. Elleworth	Rapid City	SAC		40°C at iKm			Reating		•	846,928	18,059	893,473	398	
	Sb									865,476	77,846	889,941	0	
. Kingaley	Klansth	ADC		30°C at IKm				Deating		200,635	12, 134			105,1
	Falls, OR									190,565	9, 148			34, 3
, Davis-	Tucson,	TAC		126+"C at IKm			Couling	Electric		877,575	4,479	348,754		
Hunthag	AZ									963, 508	7,992	301,613		
llickan	Unnolula,	PACAF								1,690,526	64,471		27,067	
	Oaha, UL								Cooling	1,611,658	26, 108		21,317	
. Whenler ⁶	Wah Love ,	PACAP							Cast Ling					
. detlaws ⁸	Oahu, Bi Waiwanalo,	PACAF						Electric						
	Oshu, III													
. Langley	liampton,	TAC		41°C/700m					Heat Log	1,019,488	652,423	97, 266	1, 185	
	VÅ				_					1,227,036	653, 140	102,421	1,289	
. Charleston	Charleston,	HAC		60°C at 1Km	x		Resting	Cooling		593,421 685,444	499,034 279,870	103,205	iá l	
	SC .	TAC			x			Beat ing	Cooling	697,857	624	596.459	4,426	
• Notleman	Aleegordo,	TAG			•					750, 137	334	605, 148	2,062	
. Kirtland	Albuquerque,	MAC		32°C at 500m			Rest ing	Cooling		1, 184, 940	24, 390	920, 259	9,384	
	894						-	-		1,007,680	16,712	775,271	6,034	
. Edwarda	Restanced	AFSC		85°C-90°C at	Fonsible.		liset log	Cooling		1, 270, 327	12,779	722.012	12, 259	
. Lavardø	CA	AFat		2Km	10001010					1, 321, 668	23, 157	592,484	6,200	
, George	Victorville	TAC		30°C	Possible			Resting	Cooling	482,189	4,937	483, 108	1,336	
	CA								_	503, 347	22,095	381,915	1,310	
. McClellas/	Sacramento	APLC/				x		Heating	Cooling	2,057,934	11,653	1, 393, 666	2, 243	
Mather	CA	ATC			Possible				Benting	2,090,274 533,924	83,388 20,214	1,121,575 296,528	3,031	
. March	Riversida	SAC			roesiole				oncart tug	521,722	16, 379	244,887		
	CA									801, 352	32, 747	475, 881	-	
. Nortos	San Berner-	MAC		35°C					Reating	813,902	44.988	408, 392		
. Vandenberg	dino, CA								-	1, 589, 720	207, 104	800, 338	12,515	
. vandenberg	Longouc, CA	SAC		25-35°C				Cooling		1,456,786	267, 509	645,080	13, 141	
Keesler	Bilozi.	ATC				100°C at				1,727,089	844	967,798		
	HS					444		Cooling		1,697,253	204	955,730		
. Ellington	Genoa,					200°C at	Cooling			294.675		96,482		
	π					4K.m				144, 107		59,727		
. Luke	Phoenis, AZ	TÂÇ	Possible	150°-200°C			Cooling	Electric		701, 522	30,116	390, 799	2,738	
Offutt	onaho,	SAC		at 3Km	-					827,451	38,479	364,043	2,638	
	osana,	040			x			ilest i ag	Cooling	1,558,054	46,518	1, 151, 879		
Williams	Giand ler,	ATC		200°C at 3Km			Cooling	Plantato		1,730,058	187, 535	1,076,369		
	AZ						www.ring	Electric		524, 320	691	197,059	408	

1 Trequeratore/depth is given if knows or can be estimated. 2 Magna is not listed as it is not known on any bases. 3 Use is listed. 4 If resource is evaluable.

.

⁵ Figures are in MBTU's. ⁵ ⁶ Oppur Eigure is for 1975; lower is for 1978. ⁶ Note and the state of the state of the state of the state for an angular for all three bases in Howaii are totaled and presented as Ricks AFS energy use.

TABLE 3.

RELATIVE PRIORITIES FOR EXPLORATION AND UTILIZATION OF AIR FORCE LANDS

Air Base	Resource Temp °C	Thermal Grad °C/Km	Depth to Prod Km	Need	Assessed Priority ¹
Mtn Home	100	4-60	4	Low	II
Saylor Creek Range	100-200	50-90	3	Low	I
Dover	48	38	1	Moderate	IV
Ellsworth	50	31-45	1.35	High	I
Kingsley	30	UK	1	Very Low	īv
Davis-Monthan	130	50	1	Moderate	II
Hawaiian beses	UK ²	UK	UK	High	II/III
Langley	41	41	.07	High	III
Charleston	60	60	1	Moderate	I
Holloman	40	32	3	High	II
Kirtland	60	80	i	Very High	
Edwards	85-90	45	2	Very High	
George	30	UK	UK	Moderate	III
McClellan/ Mather	UK	OK	UK	Very High	п
March	ÛK	UK	UK	Moderate	IV
Norton	35	UK	UK.	High	III
Vardenberg	25-35	40	2	Very High	I
Keesler	100	30	4	Very High	III
Ellington	200	35	5	Very Low	IV
Luke	150-200	60	4 5 3	High	I
Offutt	35	35	1	Very High	III
Williams	200	85	3	Moderate	I

¹ I (highest priority) ~ - IV (lowest priority)

2 UK = Unknown

Grogger

RECOMMENDATIONS

The geothermal community is recognizing only one member of the Department of Defense (DOD) as being seriously interested in geothermal energy, the United States Navy. This is due to the work completed during the investigation of the Coso Springs geothermal area of California. The development of this area has been much slower than originally planned because of several factors concerning resource quality and quantity.

The large variety of and the potential for geothermal resources available for USAF utilization is the greatest for any of the United States military agencies. The following recommendations are presently being used to assist the USAF in the goal of investigating, developing and utilizing geothermal resources.

- 1. Develop funding for geothermal research and development.
- 2. Make the geothermal community aware of the Air Force's interest in geothermal resource utilization.
- 3. Make the United States public aware of the Air Force's interest in geothermal energy. In recruitment advertising show the need for energy awareness and the possibility of learning about energy and the career possibilities in energy fields.
- Use the information presented in this report to develop a specific timetable for a geothermal energy program.
- 5. New legislation dealing with geothermal energy in the Congress should be followed carefully and comments made to the appropriate members to enhance the Air Force's geothermal program.
- 6. Air Force/DOD should plan for eventual tiein to existing power grids in order to wheel power from an Air Force/DOD geothermal-electric plant to other installations. The assumption is made that one or more DOD installations will eventually be producing geothermal-electric power excess to local base facility energy needs. To provide the most economical use of the excess capacity, arrangements could be made for feeding power into existing power grids for wheeling to other DOD installations.

ACKNOWLEDGEMENTS

The author would like to thank the Air Force Office of Scientific Research and the Southeastern Center for Electrical Engineering Education (SCEEE) for assistance in completing the geothermal project.

The Air Force Engineering Systems Command (AFESC) and its Energy Team deserve special thanks for their interest and constant assistance. Dr. Richard N. Miller of SCEEE and Lt. Col. Fred Morrow of AFESC were especially helpful and were responsible for a well-organized program.

Finally, he would like to thank Mr. Bruce McDonald for many helpful discussions, in assisting the author in procurring needed materials, and taking a sincere interest in the utilization of geothermal energy by the United States Air Force.

REFERENCES

- Tolbert, W.A., 1978, Technology assessment-geothermal: USAF, Air Force Systems Command, Civil and Environmental Engineering Development Office, Civil and Engineering Development Office, Tyndall AFB, Florida.
- Austin, C.F. and Wheland, J.A., 1978, Geothermal Potential at US Air Force Bases, USAF Civil and Environmental Engineering Development Office Report-78-47, Tyndall AFB, Florida.