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ABSTRACT 

A s  p a r t  of a j o i n t  federa land  state qeothermal 
resource assessment o f  t he  M t .  Hood.stratovolcano i n  
Oregon,. Lawrence Berkeley Laboratory performed a 
series of  deep electromagnetic soundings over t he  
frequency range 0.1 to  200 Hz. The soundings, per- 
formed with a large-moment hor izonta l  loop system 
(EM-601, permit an ana lys i s  of  ea r th  r e s i s t i v i t y  i n  
t h e  region. Horizontal  loop sources were placed a t  
th ree  loca t ions  around t h e  volcano and magnetic 
f i e l d s  w e r e  recorded a t  nine rece iver  sites located 
between 1 and 2 km from t h e  individual  sources. 
Square wave cur ren ts  o f  up t o  150 A (p-p) w e r e  
impressed i n t o  t h e  loops and a t  each rece iver  loca- 
t i o n  amplitude and phase spec t r a  o r  e l l i p t i c i t y  of 
normal and r a d i a l  magnetic f ie ldswereanalyzed  t o  
obta in  one-dimensional r e s i s t i v i t y  models. Layered 
e a r t h  inversions y i e l d  similar two-layer models of  
a r e s i s t i v e  sur face  l aye r ,  0.5 t o  0.7 h i t h i c k ,  over 
l y ing  a conductive l a y e r o f  indeterminate thickness. 
A sounding a t  t h e  nor th  side of  t h e  mountain shows 
a 3 ohm-m layer  a t  a depth of 0.7 km. This re- 
s u l t  agrees  w e l l  with magnetotel lur ic  r e s u l t s  i n  
t h e  same area (Goldstein and Mozley, 1978). The 
cause of  t he  high conduct ivi ty  zone may be high- 
temperature, water-saturated condi t ions beneath the  
cold meteoric water zone. 

INTRODUCTION 

A s  p a r t  of a geothermal research projectat N t .  
Rood, Oregon, t h e  U. S. Department of Energy, U. S. 
Geological Survey, U. S. Fores t  Service, and t h e  
S t a t e  of  Oregon have undertaken a series of geolo- 
g i ca l ,  geochemical.,and geophysical s tud ie s  (Fig. 1). 
Working f o r  DOE/Division of  Geothermal Energy, LBL' 
w a s  responsible  f o r  geochemical and electrical re- 
s i s t i v i t y  surveys (Wollenberg. et al.,  1979; Gold- 
s t e i n  and Mozley, 1978; Goldstein, et a1.,1978). 
These and o the r  coordinated s tud ie s  were designed 
t o  evaluate  t h e  geothermal resource p o t e n t i a l a t  M t .  
Hood and t o  he lp  formulate an explorat ion s t r a t egy  
t h a t  might be applicable to  o ther  volcanoes i n  the  
High Cascade Range. 

Because o f  t e r r a i n ,  access, and high surface 
(contact)  res i s tance ,  conventional dc r e s i s t i v i t y  
surveys were impractical f o r  deep explorat ion a t  
M t .  Hood. W e  t he re fo re  embarked on a program of 
remote reference magneto te l lur ics in1977 (Goldstein 
and Mozley, 1978) followed by a controlled-source 
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Fig. 1. Projec t  loca t ion  map, M t .  Hood, Oregon. 

electromagnetic sounding program i n  1978. 
paper w i l l  dea l  p r imar i ly  with the  deep electromag- 
n e t i c  soundings which were conducted w i t h t h e l a r g e -  
moment, horizontal-coi l  system developed by LBL and 
the  University of Cal i forn ia ,  Berkeley (Morrison 
et al . ,1978) .  The system, ca l l ed  t h e  EM-60 because 
of t he  60-kW motor generator  t h a t  energizes  the  
t r ansmi t t e r  loop, was operated a t  severa l  sites on 
t h e  f lanks  o f thevo lcano  during August1978 (Fig. 1). 

This 

GEOLOGY OF M". HOOD 

M t .  Hood is  a Pleis tocene composite andes i t i c  
s t ra tovolcano r i s i n g  some 2500 m above t h e  surround- 
ing  t e r r a i n .  Development of t he  main body o f  t h e  
cone w a s  completed about 20,000 years  ago ( W i s e ,  
1968) and renewed volcanism occurred about 12,000 
years  ago when severa l  domes were extruded near t h e  
sur face  (Crandell and Rubin, 1977). Further  epi-  
sodes of volcanism caused t h e  col lapse of t h e  south 
r i m  of t h e  crater roughly 1600 years ago; minor 
e rupt ions  were reported i n  1859 and 1865 (Folsom, 
1970). 

709 



W i l t  et a l .  

M t .  Hood is  located along a north-south volca- 
n i c  t rend with most of t h e  o ther  Cascade volcanoes 
of Oregon and Washington. This t rend  may be asso- 
c ia ted  with a f a u l t  zone located along t h e  western 
edge of t h e  High Cascades (Thayer, 1937; Callaghan, 
1933). Allen (1966) bel ieves  t h a t  M t .  Hood l ies  
within a graben formed by t h e  Hood River/Green 
Ridge f a u l t s  on t h e  east and unnamed f a u l t s  recog- 
nized by Thayer and Callaghan to  t h e  w e s t .  

The predominant s u r f i c i a l  material covering 
M t .  Hood is a n d e s i t i c  clastic debris .  The exten- 
sive lava  flows predat ing t h e  debr i s  a r e  predomi- 
nant ly  horneblende andesi te ,  whereas more recent  
extrusions on t h e  north and northeast  f lanks  of t h e  
volcano are o l i v i n e  b a s a l t  and o l i v i n e  andesi te .  
Several  EM soundings w e r e  performed within 3 m i l e s  
of the  summit on clastic debris ,  which o v e r l i e  t h e  
andesi te  flows. Other soundings were made i n  t h e  
Summit Meadows area ,  over lake sediments a t  t h e  
southern base of t h e  volcano. 

FIELD SURVEYS 

Three t ransmi t te r  sites were occupied f o r  t h e  
EM experiment: (1) Summit Meadows ( S M ) ,  immediate- 
l y  south of t h e  warm water emanations a t  Swim Warm 
Springs; (2) Timberline Lodge (TL), near t h e  lodge 
on t h e  r e l a t i v e l y  accessible  south flank; and 
( 3 )  Cloud Cap (CC), near t h e  erupt ive center  on t h e  
northeast  f lank where anomalous r e s i s t i v i t i e s  were 
indicated by MT survey r e s u l t s .  

Two t o  four rece iver  sites were occupied f o r  
each t ransmi t te r  (Fig. 1). In  order  t o  create a 
l a r g e  dipole  moment (grea te r  than lo6  M K S ) ,  t h r e e  
t u r n s  of  #6 welding cable were l a i d  out ,  usual ly  i n  
a square, 100 m on a s ide .  A square-wave cur ren t  
a t  d i s c r e t e  frequencies between 0.1 and 200 Hz w a s  
impressed i n t o  t h e  t ransmi t te r  loop. Peak-to-peak 
cur ren t  var ied between 150 A a t  low frequencies t o  
less than 40 A a t  the  highest  frequencies where in- 
duct ive e f f e c t s  l i m i t  t h e  current .  A schematic of 
t h e  EM-60 system is shown i n  Figure 2. 

A t  receiver  loca t ions ,  1 t o  2 km from t h e  
t ransmi t te r ,  magnetic f i e l d s  were detected with a 
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three-component cryogenic magnetometer or iented 
t o  de tec t  the v e r t i c a l  or normal f i e l d  ( H N ) ,  t h e  
r a d i a l  f i e l d  ( H R ) ,  and t h e  tangent ia l  f i e l d  ( H T ) .  
Signals w e r e  amplified and band-passed f i l t e r e d  f o r  
an t i -a l ias ing  and signal-to-noise improvement. The 
s i g n a l s  were then f i e l d  processed by means of a mul- 
t ichannel ,  microprocessor-controlled wave analyzer 
t h a t  stacked a spec i f ied  number o f  cycles  and yield-  
ed an average "raw" amplitude and an average phase 
r e l a t i v e  t o  cur ren t  phase i n  the  loop. Spectral  
es t imates  were made automatically a t  the  fundamental 
frequency and a t  a spec i f ied  number of the  higher 
order  odd harmonics, usual ly  the  t h i r d ,  f i f t h ,  and 
seventh. Although t h e  system can operate  t o  Hz, 
t h e  lowest frequency conveniently obtained is lo-' 
Hz because of t h e  signal-to-noise,  which decreases 
roughly as f 2  a t  low frequencies.  

Because t h e r e  is no simple way t o  ca lcu la te  an 
apparent r e s i s t i v i t y ,  as i n  dc r e s i s t i v i t y ,  b a s i c  
in te rpre ta t ion  must be done by comparing f i e l d  
curves with precalculated curves. Usually ampli- 
tude-phase or  e l l i p t i c i t y  spec t ra  are f i t  t o  one- 
dimensional layer  model curves by t r i a l  and error 
or d i r e c t  inversion. 

F ie ld  and laboratory processing procedures f o r  
t h e  M t .  Hood survey were complicated by c u l t u r a l  EM 
noise  and rugged t e r r a i n .  High man-made noise  a t  
60 and 180 HZ required use of  notch f i l t e r s  whose 
e f f e c t  on neighboring frequencies  had t o  be care- 
f u l l y  determined before  t h e  spec t ra  could be in-  
verted.  More formidable w a s  the  t e r r a i n  problem, 
which forced us t o  lay  o u t  loops TL and CC on an 
i r r e g u l a r  and inc l ined  surface.  Because the  prima- 
r y  f i e l d  from these  loops has both v e r t i c a l  and hor- 
i z o n t a l  components, it w a s  necessary t o  rotate t h e  
HN and HR f i e l d s  mathematically t o  f i n d  t h e  or ien-  
t a t i o n  f o r  which HN was normal t o  t h e  plane of  t h e  
loop. This r o t a t i o n  introduced some error i n t o  the  
spec t ra ,  espec ia l ly  i n t o  t h e  radial component whose 
amplitude is normally very small a t  low frequency. 
Another approach t h a t  we  successfu l ly  t e s t e d  w a s  t o  
der ive t h e  e l l i p t i c i t y  of  t h e  observed HN and HR 
components, which a r e  independent of loop inc l ina-  
t i o n ,  and t o  i n v e r t  s o l e l y  on e l l i p t i c i t y .  

RESULTS 

Of t h e  nine soundings made, only four  have 
been successful ly  analyzed i n  terms of layered ear th  
models. 
c e r t a i n t y  because t h e  intervening t e r r a i n  between 
t ransmi t te r  and rece iver  caused d i s t o r t i o n  of  t h e  
f i e l d  curves. 
w i l l  have t o  be in te rpre ted  i n  terms of two-dimen- 
s iona l  models. 
shown i n  Figures 3, 4, and 5 f o r  rece iver  s t a t i o n  
TL2 and Figures 6, 7 ,  and 8 f o r  rece iver  stationCC1. 
Two s l i g h t l y  d i f f e r e n t  i n t e r p r e t a t i o n s  a r e  shown f o r  
each receiver  site. One is derived from a combined 
inversion using t h e  four  Components of amplitude and 
phase of  t h e  normal and radial f i e l d s  with the  am-  
p l i t u d e s  normalized f o r  the  primary f i e l d .  

Two soundings were not  in te rpre tab le  with 

The three soundings from loop SM 

Examples of  analyzed spectra  a r e  

W e  a l s o  
XeL786-2575 show t h e  inversion based on e l l i p t i c i t y  with t h e  

Fig. 2. System schematic of horizontal-loop r a t i o  of minor to.major axes of t h e  ellipse traced 
electromagnetic system EM-60 Out by HR and HN. 
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For each inversion, a two-layer ear th  is indi -  
cated. The inversion program reduced a l l  our i n i -  
t i a l  three-layer models t o  two layers.  A more re- 
s i s t i v e  zone below the second layer ,  indicated by 
MT (Goldstein e t  al. ,  1978) is  not resolved by the  
technique, mainly because of t he  r e l a t i v e l y  small 
t ransmi t te r - rece iver  separation used. 

o Calculated 
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Frequency ( Hz 1 XBL 7967521 The models f o r  sounding TL2 are t yp ica l  of 
those f o r  t h e  o ther  soundings near Timberline Fig. 5.  Magnetic f i e l d  e l l i p t i c i t y  sounding TL2. 
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Lodge. A resistive surface layer  e x i s t s  t o  a depth 
of  0.5 km, underlain by a more conductive zone of 
undetermined thickness .  Amplitude-phase and e l l i p -  
t i c i t y  r e s u l t s  are very similar, implying e i t h e r  
t h a t  t he  ro t a t ion  errors are small o r  t h a t  low-fre- 
quency da ta  do not  s t rongly  inf luence t h e  model. 

The inversion of sounding CC1 (Figs. 6 t o  8) 
y i e lds  a model f o r  t h e  Cloud Cap area t h a t  i s  simi- 
lar  t o  t h e  Timberline model. The r e s i s t i ve -  surface 
layer  is  th icker ,  bu t  more important, t h e  second 
l aye r  appears to  be unusually conductive. The re- 
s u l t s  from s t a t i o n  CC1 may be compared with a one- 
dimensional MT in t e rp re t a t ion  f o r  t he  same area, 
shown i n  Figure 9 (Goldstein and Mozley, 1978). 
Above 1.0-km depth, MT and EM in t e rp re t a t ions  show 
good agreement. Resis t ivi t ies  and thicknesses  f o r  
the f i r s t  l ayer  agree pa r t i cu la r ly  w e l l  between MT 
and the  EM e l l i p t i c i t y  r e su l t s .  

DISCUSSION 

The t e s t  of  t h e  EM-60 a t  M t .  Hood has  demon- 
s t r a t e d  t h a t  a large-moment controlled-source EM 
system can be employed successful ly  i n  rugged a reas  
and on t a l u s  s lopes where dc r e s i s t i v i t y  surveys 
become d i f f i c u l t  t o  car ry  out .  
between MT and EM r e s u l t s  a t  Cloud Cap g ives  u s  con- 
fidence i n  our a b i l i t y  t o  i n t e r p r e t  t h e  EM da ta  
desp i t e  imperfect knowledge about t h e  r e l a t i v e  o r i -  
en ta t ion  of  t ransmi t te r  dipole  moment and rece iver  
axis. 

The good agreement 
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Fig. 9. Range of one-dimenslonal renir ; t ivxty 
models t h a t  f i t  magiietotelluric sounding 
da ta  f o r  a s i te  ncar CC1 (from Chldstein 
and Mozley, 1978). 

Because of  l imi t ed  d r i l l i n g  and subsurface 
temperature information, we can not y e t  g ive  a sub- 
s t an t i a t ed  geological  explanat ion f o r t h e  subsurface 
r e s i s t i v i t i e s .  The h igh - re s i s t i v i ty  sur face  layer  
probably represents  the  shallow zone of  co ld  meteor- 
i c  water moving downslope through permeable ash 
and block flows. The low-res i s t iv i ty  second layer  
may represent a water-saturated zone of higher t e m -  
pera ture ,  containing meteoric water t h a t  has  been 
heated high on the  mountain. 
eters of w a r m  water a t  Swim W a r m  Springs ind ica te  
t h a t  the  maximum temperature encountered may be 
from 150° t o  2OOOC (Wollenberg et al., 1979). The 
unusually low r e s i s t i v i t y  of t h e  second l aye r  be- 
neath Cloud C a p  (2 t o  3 ohm*m) has r a i sed  t h e  spec- 
u l a t ion  t h a t  t he  subsurface water temperature may 
be enhanced by r e s idua l  hea t  from the  Cloud C a p  
eruption. A temperature hole  is planned f o r  t h i s  
area i n  1979 (J. -bison, USGS, personal communi- 
ca t ion ) .  
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