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Expressions for permeability and elastic 
moduli can be derived. 
means of modeling the microstructure controlling 
permeability and velocity and they elucidate the 
feasibility of predicating the functional depen- 
dence of permeability on pressure from independent 
determination of microstructure, such as from 
ultrasonic data. 

Such expressions provide a 

An equation for the diffusion of fluid through 
cracked rock has been derfved by H. Fisher [l], and 
involves explicitly the permeability 1, and the 
pressure derivative of a "conduit porosity" 8, with 
respect to pore pressure P h' 

de 6ph V (k VPh) a p -- 
dPh 6t 

In equation (1) & is viscosity and t is time. 
porosity is defined by its total derivative 

The 

where V is the bulk volume and Vh is the pore vol- 
ume at any pressure and temperature. 
arises in evaluating equation (1). A s  Fisher 
notes: "The related quantities k, 8, and d9/dP and 
in particular the dependence on pressure cannot be 
exactly determined since they also depend on the 
pore volumes." However, it is possible to approach 
this problem by seeking to characterize the manner 
in which the microstructures that form the conduits 
for fluid flow can be related to elastic properties 
such as a compliance through their effects on bulk 
strain and velocities. 

Difficulty 

In sufficient generality, a normalized elastic 
compliance d/O,, (such as compressibility) can be 
expressed in terms of a "referred porosity" and 
its ~reseure derivative 12).  

(3)  
w = 1 - VJY 

where Vo is the reference solid material and 

(4) 

where R is ,thF applied stress state which is used 
in defining t) (for example, R is applied pressure 
in the case of compressibility). 
affecting the elastic deformation is involved. 
This is an "elastic porosity" to distinguish it 
from the conduit porosity. 

All the porosity 

The expression for ($/bo - 1) can be obtained 
from velocity data or from modeling theory [2,310 
Velocity-pressure data for rocks show systematics 
which are related to microstructure and which can 
be inverted into model microstructure by express- 
ing equation (4) in terms of distributions over 
partial porosities (in, given by IVh/V) and pore 
strains (,eh/eo). 

The question arises, can the conduit porosity 
be related to the elastic porosity? A t  present 
this question requires experiments to be 
answered. 
porosities are numerically equal,- but the pressure 
derivatives may well be relatable. 
d8/dPh can be stated in terms of dw/dR through 
the expressions for the pore strains. 
(5) the geometries of the pores and their closure 
laws are not restricted. For cracks, the approx- 
imate form of the solution follows, using the 
distributions in a form involving a pore number 
density. 

One cannot tell yet whether the two 

The quantity 

In equation 

If the crack network i s  characterized by some 
distributions in length and width b, then the 
number density distribution satisfies 

i! & dadb = N 

where N is the total crack number density and 
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Fig. 1 Permeability and the cubic function of acoustic data versus pressure for GT-2-9522/9519 
(permeability data on 9522) from J. Potter, personal communication. 

If the Kozenzy relation is assumed for per- 
meabil i ty 

where is a constant and is the characteristic 
crack width given by-the ratio of poxe volume to 
surface area 

5 a a2b a2W dadb cladti/! a$&- dadb (9) 

and can be obtained for a model crack spectrum 
fitting the velocity data. The pressure dependence 
of & is thus expressible as a funaion of the pres- 
sure dependence of the density distribution. 

Two conclusions that can be dra? are: 1) 
that various pressure laws ate equally admissible, 
which may help explain why published power laws 
fit to permeability have shown such a wide range 
of exponents (from 2 or 3 to 6), and 2) that 
comparison of acoustic data or model-crack spectra 
to permeability-pressure data may elucidate the 
effects of tortuosity and pinch-off on the conduit 
porosity. Figure 1 illustrates these points. The 

figure shows a comparison of permeability data to 
a cubic function of the compressional wave vel- 
ocity data for a sample of granodiorite from 
LASL's Fenton H i l l s  HDR geothermal site. New 
Mexico (41. The velocity-pressure data can be 
modeled assuming cracks with linear closure laws. 
The parallelness of these curves indicates that 
the same microcrack network controls both permea- 
bility and acoustic properties and that, based 
on the model, permeability goes as the average 
crack width (over all pores) cubed. 
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